SIDM with an observable ΔN_{eff} in a $U(1)_D$ framework

Thursday 10 July 2025 16:00 (15 minutes)

We propose a GeV-scale self-interacting dark matter (SIDM) candidate within a $U(1)_D$ extension of the Standard Model (SM), addressing small-scale structure anomalies in Λ CDM while predicting an observable contribution to ΔN_{eff} . The model introduces a fermionic DM candidate χ and a scalar ϕ , both charged under an unbroken $U(1)_D$ gauge symmetry. The self-interactions of χ are mediated by a light vector boson X^{μ} , whose mass is generated via the Stueckelberg mechanism. The relic abundance of χ is determined by thermal freeze-out through annihilations into X^{μ} , supplemented by a non-thermal component from the late decay of ϕ . Crucially, ϕ decays after Big Bang Nucleosynthesis (BBN) but before the Cosmic Microwave Background (CMB) epoch, producing additional χ and a dark radiation species (ν_S). This late-time production compensates for the underabundance from efficient annihilation into light mediators, while remaining consistent with structure formation constraints. The accompanying dark radiation yields a detectable ΔN_{eff} , compatible with Planck 2018 bounds and within reach of next-generation experiments such as SPT-3G, CMB-S4, and CMB-HD.

Presenter: SINGH THOUNAOJAM, Vicky (Indian Institute of Technology, Hyderabad) Session Classification: Parallel 1