

Contribution ID: 181

Type: **Poster Presentation**

Anisotropic Flow of Identified Hadrons in O+O Collisions at $\sqrt{s_{NN}} = 200$ GeV

Tuesday, 24 March 2026 19:06 (1 minute)

Recent measurements of charged hadron azimuthal anisotropies in both asymmetric and symmetric small collision systems have far-reaching implications for the origins of final state momentum anisotropy driven by nucleonic as well as sub-nucleonic fluctuations present during the initial state. The creation of Quark-Gluon Plasma (QGP) in small collision systems is a topic of active research, given their extremely short lifetime and the question of formation of a thermalized medium in such collisions. During the data taking in 2021, STAR recorded a large statistics of minimum bias and high multiplicity events of O+O collisions at $\sqrt{s_{NN}} = 200$ GeV. We present the anisotropic flow (v_n) of the identified hadrons, π^\pm , K^\pm , and $p(\bar{p})$, as well as the strange hadrons, K_S^0 , $\Lambda(\bar{\Lambda})$, and ϕ in O+O collisions using the sub-event Q-cumulant method. In particular, we study the transverse momentum (p_T) dependence of elliptic (v_2) and triangular (v_3) flow coefficients in order to test the number-of-constituent-quark (NCQ) scaling hypothesis in central O+O collisions. This will provide valuable insights regarding the influence of partonic phase on the origins of collectivity in such a small collision system. The system size dependence of $v_2(p_T)$ and $v_3(p_T)$ is also shown by comparing with existing measurements in relatively larger systems (e.g., Cu+Cu, Au+Au, and U+U) at similar collision energies. This is expected to help in understanding the effect of initial state spatial anisotropies, characterized by the eccentricities (ε_n), on the final state momentum anisotropies.

Authors: STAR COLLABORATION; Mr PRODHAN, Santanu (IISER Tirupati)

Presenter: Mr PRODHAN, Santanu (IISER Tirupati)

Session Classification: Poster Session