

Contribution ID: 123

Type: **Oral Presentation**

Evidence of ${}^4\bar{\text{Li}}$ signal from $\bar{p} + {}^3\bar{\text{He}}$ femtoscopy

Tuesday, 24 March 2026 17:45 (20 minutes)

At the LHC, matter and antimatter are produced in equal abundance, making it a true antimatter factory. Among the many antiparticles observed, antinuclei are of particular interest, as their production mechanism in high-energy hadronic collisions remains a topic of active discussion and fascination. The ALICE Collaboration has previously measured, for the first time, the production of anti-alpha (${}^4\bar{\text{He}}$) nuclei in pp and Pb-Pb collisions. However, ${}^4\bar{\text{He}}$ is not the only known $A = 4$ nucleus: the unstable ${}^4\bar{\text{Li}}$ nucleus has also been observed in a few experiments and is experimentally accessible by ALICE. In this talk, the first evidence of the antimatter counterpart of ${}^4\text{Li}$, the anti- ${}^4\text{Li}$ nucleus (${}^4\bar{\text{Li}}$), is presented. The particle is reconstructed via its two-body decay channel ${}^4\bar{\text{Li}} \rightarrow {}^3\bar{\text{He}} + \bar{p}$, using both invariant-mass analysis and femtoscopic correlations. A dedicated analysis procedure has been developed to subtract the correlated and uncorrelated ${}^3\bar{\text{He}} - \bar{p}$ combinatorial background. The production yield of ${}^4\bar{\text{Li}}$ is compared with that of ${}^4\bar{\text{He}}$. Owing to its resonance nature and its spin degeneracy, the production of ${}^4\bar{\text{Li}}$ is expected to be enhanced relative to the compact ${}^4\bar{\text{He}}$, making this new measurement a sensitive probe for testing nucleosynthesis models in high-energy hadronic collisions.

Authors: ALICE COLLABORATION; LUCIA, Giorgio Alberto (Politecnico Torino)

Presenter: LUCIA, Giorgio Alberto (Politecnico Torino)

Session Classification: Parallel I: Strangeness and HF