

Contribution ID: 207

Type: **Poster Presentation**

Unveiling the Secrets of Nuclear Structure: Alpha-Clustering and Collective Flow in Collisions of Small systems at LHC Energies

Tuesday, 24 March 2026 19:18 (1 minute)

The search for quark-gluon plasma in small collision systems has led to renewed interest in the internal structure of nuclei. This study explores the impact of alpha-clustering –the formation of ${}^4\text{He}$ nuclei within larger nuclei –on collective flow in oxygen-oxygen (O-O) collisions at the Large Hadron Collider. Utilizing a sophisticated hybrid hydrodynamic model, we demonstrate that alpha-clustering significantly modifies anisotropic flow coefficients (v_2 and v_3), particularly at low multiplicities, leading to enhanced collective behavior. Furthermore, we observe unique fluctuations in v_2 that are sensitive to both final-state multiplicity and the underlying nuclear density profile. These findings provide compelling evidence for the importance of internal nuclear structure in shaping the dynamics of heavy-ion collisions and offer a novel pathway for validating advanced theoretical models. This work opens new avenues for probing the interplay between nuclear structure and the emergence of collective phenomena in extreme environments.

Refs:

- [1] S. Prasad, N. Mallick, R. Sahoo, G.G. Barnaföldi: Phys. Lett. B 860 (2025) 139145
- [2] A.M. Kavumpadikkal Radhakrishnan, S. Prasad, N. Mallick, R. Sahoo, G.G. Barnaföldi: Physics Letters B 870 (2025) 139941

Authors: MENON K R, Aswathy (Indian Institute of Technology Indore (IN)); BARNAFOLDI, Gergely (Hungarian Academy of Sciences (HU)); MALLICK, Neelkamal (University of Jyväskylä); SAHOO, Raghunath (Indian Institute of Technology Indore (IN)); Mr PRASAD, Suraj (Indian Institute of Technology Indore (IN))

Presenter: BARNAFOLDI, Gergely (Hungarian Academy of Sciences (HU))

Session Classification: Poster Session