

Contribution ID: 202

Type: **Oral Presentation**

Testing the compatibility of lQCD spatial diffusion coefficient by mean of experimental open heavy flavor observables: R_{AA} , v_2 , and v_3

Wednesday, 25 March 2026 10:55 (20 minutes)

Heavy-flavour production represents a crucial probe for studying transport properties of the Quark-Gluon Plasma (QGP), with the spatial diffusion coefficient $D_s(T)$ encoding the interaction strength between heavy quarks (HQs) and the medium. Recent lattice QCD (lQCD) results with dynamical fermions show very low values, $2\pi T D_s \approx 1$ for charm quarks at $T = T_c$, much lower than quenched QCD and most phenomenological models ($2\pi T D_s \approx 3.5-5$). These values imply short thermalization times ($\tau_{th} \approx 1-1.5 \text{ fm}/c$) for HQs, raising questions about their compatibility with experimental data such as the nuclear modification factor R_{AA} , and flow coefficients v_2 , v_3 of D mesons and Λ_c baryons; both in close agreement to the recent experimental data of ALICE and CMS. We study this aspect using an event-by-event Langevin transport model. In particular, we test different scenarios and show that low $D_s(p \rightarrow 0)$ values can match experimental data only if the thermalization time $\tau_{th}(p) = 1/A(p)$ depends strongly on momentum, as predicted by T-matrix approaches and the extended Quasi-Particle Model (QPMp). In contrast, assuming a constant $\tau_{th} = M_c D_s^{\text{lQCD}}/T$ does not reproduce the observed experimental trends. We also study the implications of a small thermalization time for both charm and bottom quarks. Moreover, fast thermalization makes final-state observables largely insensitive to the initial charm-quark momentum distribution up to $p_T \approx M_c$, suggesting a universal behavior driven by a dynamical attractor.

- [1] M.L.Sambataro, V. Minissale, S. Plumari and V. Greco, Phys.Lett.B 849 (2024) 138480.
- [2] M. L. Sambataro, V. Greco, G. Parisi and S. Plumari, Eur.Phys.J.C 84 (2024) 9, 881.
- [3] M. L. Sambataro, V. Minissale, S. Plumari and V. Greco, e-print:2508.01024 (accepted by PLB).

Authors: SAMBATARO, Maria Lucia (Università di Catania - LNS (INFN)); Dr MINISSALE, Vincenzo (Università di Catania, INFN (sezione di Catania)); Prof. PLUMARI, Salvatore (Università di Catania - LNS (INFN)); Prof. GRECO, Vincenzo (Università di Catania - LNS (INFN))

Presenter: SAMBATARO, Maria Lucia (Università di Catania - LNS (INFN))

Session Classification: Parallel II: Bulk Properties