

Contribution ID: 194

Type: **Oral Presentation**

Nonperturbative Heavy-Flavor Transport Approach for Hot QCD Matter

Tuesday, 24 March 2026 16:45 (20 minutes)

Heavy quarks serve as pristine probes of the transport properties and hadronization dynamics of the quark-gluon plasma (QGP) created in high-energy nuclear collisions. A key challenge in this context is to embed the interactions of heavy quarks in the expanding medium compatible with the strong-coupling nature of the QGP, and thus to unravel the underlying microscopic mechanisms. Toward this end, we present a comprehensive framework that employs state-of-the-art treatments of these components.

The transport of heavy quarks in the QGP medium is described by a Langevin-based transport model that has been augmented to incorporate medium-induced radiation. This transport model is coupled to a bulk evolution model based on 2+1D relativistic viscous fluid dynamics. The heavy quark transport coefficients are derived from nonperturbative T-matrix calculations, which account for resonant correlations near the QGP transition temperature. Hadronization of heavy quarks is described by a fragmentation-plus-recombination model. We utilize the resonance recombination model that satisfies 4-momentum conservation and provides an equilibrium mapping between quark and meson distributions. The recombination probabilities are derived from resonant heavy-quark scattering rates.

We report key observables in open heavy flavor physics, including the nuclear modification factor, elliptic flow, baryon-to-meson ratio, as well as D-Dbar angular correlations, and compare our results with experimental data from the RHIC and LHC.

Reference:arXiv:2509.13881

Author: FU, Yu (Duke University)

Co-authors: RAPP, Ralf (TAMU); BASS, Steffen (Duke); KRISHNA, Tharun (TAMU); KE, Weiyao (CCNU)

Presenter: FU, Yu (Duke University)

Session Classification: Parallel II: Bulk Properties