

Contribution ID: 28

Type: **Poster Presentation**

Event-by-event net-charge fluctuations in pp, OO, Ne–Ne, and Pb–Pb collisions with ALICE at the LHC

Tuesday, 24 March 2026 18:38 (1 minute)

Investigations involving the event-by-event fluctuations of conserved quantities, like net charge, net baryon number, and strangeness in heavy-ion collisions, provide insights into the properties of QGP and the phase diagram of strongly interacting matter. Event-by-event fluctuations of net-electric charge in pp collisions at $\sqrt{s} = 13$ and 13.6 TeV and for OO, Ne–Ne, and Pb–Pb collisions at $\sqrt{s_{NN}} = 5.36$ TeV are studied by analysing the data collected by the ALICE detector at CERN Large Hadron Collider.

The analysis is carried out in terms of the variable $\nu_{\text{dyn}}[+, -]$, chosen for its robustness against the detector efficiency losses. The observed dependence of $\nu_{\text{dyn}}[+, -]$ on the charged-particle multiplicity exhibits an energy-independent smooth increase of net-charge fluctuations from smaller to larger collision systems.

The negative values of $\nu_{\text{dyn}}[+, -]$ indicate a dominance of correlations between oppositely charged particle pairs compared with those arising from like-sign charge pairs. Since $\nu_{\text{dyn}}[+, -]$ is known to have an intrinsic dependence on multiplicity, an appropriate scaling is applied. The variable is therefore scaled by the factors (i) N_{ch} and (ii) $\frac{1}{N^+ + N^-}$. The dependence of the scaled values of $\nu_{\text{dyn}}[+, -]$ on particle multiplicity is also looked into.

Author: MALIK, Nida (Aligarh Muslim University (IN))

Presenter: MALIK, Nida (Aligarh Muslim University (IN))

Session Classification: Poster Session