AdS/CFT - a theoretical physicist lab

Vasco Gonçalves

Faculdade de Ciências do Porto

FCT - 2024.00230.CERN

Fundação para a Ciência

Marie Curie SE - Hel - High energy Intelligence CEECIND/03356/2022

AdS/CFT - a theoretical physicist lab

Faculdade de Ciências do Porto

Vasco Gonçalves

EURO

FCT - 2024.00230.CERN

Marie Curie SE - Hel - High energy Intelligence CEECIND/03356/2022

My research and thematic lines of CF-UM-UP

My research and thematic lines of CF-UM-UP

Example of a work w/ phd student

Bachelor

Master

Phd

Bachelor

Master Master thesis in graphene

Phd

Bachelor

2015 thesis defense

Bachelor

Four year postdoc at ICTP-SAIFR (Brazil)

Bachelor

Four year postdoc at ICTP-SAIFR (Brazil)

Bachelor

Four year postdoc at ICTP-SAIFR (Brazil)

Bachelor

Four year postdoc at ICTP-SAIFR (Brazil)

Return to Porto (May - 2020)

CEECIND/03356/2022

de Sitter

Anti de Sitter

$$x_0^2 + \sum_{i=1}^n x_i^2 = R^2$$

CFT - conformal field theory

de Sitter

Anti de Sitter

$$x_0^2 + \sum_{i=1}^n x_i^2 = R^2$$

CFT - conformal field theory

Theory invariant under:

- Poincaré symmetry
- Scale invariance
- Special conformal transformations

de Sitter

Anti de Sitter

CFT - conformal field theory

Theory invariant under:

- Poincaré symmetry
- Scale invariance
- Special conformal transformations

de Sitter

Anti de Sitter

More uses of CFTs

More uses of CFTs

More uses of CFTs

Renormalization group flow

quantum gravity

idea: Some CFTs are secretly theories of quantum gravity. In other words

different sides of the same coin

quantum gravity

quantum gravity

idea: Some CFTs are secretly theories of quantum gravity. In other words

different sides of the same coin

So

CFT explains

Critical points in 2° order phase transitions

Fits perfectly within line 4

QFT/ RG flows

Quantum gravity

Bruno Fernandes

Bruno Fernandes

Filipe Serrano

Bruno Fernandes

Filipe Serrano

Ricardo Rodrigues

Bruno Fernandes

Filipe Serrano

Ricardo Rodrigues

Bootstrap (get the result using consistency conditions) an infinity family of correlation functions in holographic theories.

Consistency conditions/ symmetry requirements translated into a well defined mathematical problem

Consistency conditions/ symmetry requirements translated into a well defined mathematical problem

Consistency conditions/ symmetry requirements translated into a well defined mathematical problem

Toy model for mathematical problem:

Consistency conditions/ symmetry requirements translated into a well defined mathematical problem

Toy model for mathematical problem:

 \mathcal{M} and $\mathcal{\tilde{M}}$ rationals functions

Consistency conditions/ symmetry requirements translated into a well defined mathematical problem

Toy model for mathematical problem:

 \mathcal{M} and $\mathcal{\tilde{M}}$ rationals functions

 $\mathcal{M}(s,t;\sigma,\tau) = \hat{R} \circ \tilde{\mathcal{M}}(s,t)$

Consistency conditions/ symmetry requirements translated into a well defined mathematical problem

Toy model for mathematical problem:

 \mathcal{M} and $\mathcal{\tilde{M}}$ rationals functions

 $\mathcal{M}(s,t;\sigma,\tau) = \hat{R} \circ \tilde{\mathcal{M}}(s,t)$

 $\mathcal{M}(\beta s, \beta t; \sigma, \tau) \sim O(\beta) \quad \text{for } \beta \to \infty$

Consistency conditions/ symmetry requirements translated into a well defined mathematical problem

Toy model for mathematical problem:

 \mathcal{M} and $\mathcal{\tilde{M}}$ rationals functions

$$\mathcal{M}(s,t;\sigma,\tau) = \hat{R} \circ \tilde{\mathcal{M}}(s,t)$$

 $\mathcal{M}(\beta s, \beta t; \sigma, \tau) \sim O(\beta) \quad \text{for } \beta \to \infty$

poles at s, t = 2, s + t = 6

Consistency conditions/ symmetry requirements translated into a well defined mathematical problem

Toy model for mathematical problem:

 \mathcal{M} and \mathcal{M} rationals functions

$$\mathcal{M}(s,t;\sigma,\tau) = \hat{R} \circ \tilde{\mathcal{M}}(s,t)$$

 $\mathcal{M}(\beta s, \beta t; \sigma, \tau) \sim O(\beta) \quad \text{for } \beta \to \infty$

poles at s, t = 2, s + t = 6

example w/ spherical symmetry

$\widehat{R} = \tau 1 + (1 - \sigma - \tau)\widehat{V} + (\tau^2 - \tau - \sigma\tau)\widehat{U}$ $+(\sigma^2 - \sigma - \sigma\tau)\widehat{UV} + \sigma\widehat{V^2} + \sigma\tau\widehat{U^2}$

Consistency conditions/ symmetry requirements translated into a well defined mathematical problem

Toy model for mathematical problem:

 \mathcal{M} and $\mathcal{\tilde{M}}$ rationals functions

$$\mathcal{M}(s,t;\sigma,\tau) = \hat{R} \circ \tilde{\mathcal{M}}(s,t)$$

 $\mathcal{M}(\beta s, \beta t; \sigma, \tau) \sim O(\beta) \quad \text{for } \beta \to \infty$

poles at s, t = 2, s + t = 6

$$\widehat{R} = \tau 1 + (1 - \sigma - \tau)\widehat{V} + (\tau^2 - \tau - \sigma\tau)\widehat{U} + (\sigma^2 - \sigma - \sigma\tau)\widehat{UV} + \sigma\widehat{V^2} + \sigma\tau\widehat{U^2}$$

$$\widehat{U}^m V^n \circ \widetilde{\mathcal{M}}(s,t) \equiv \widetilde{\mathcal{M}}(s-2m,t-2n) \\ \times \left(\frac{4-s}{2}\right)_m^2 \left(\frac{4-t}{2}\right)_n^2 \left(\frac{s+t-4}{2}\right)_{2-m-n}^2$$

Consistency conditions/ symmetry requirements translated into a well de' יd mathematical pro^k

Toy model for mathemat[;]

 \mathcal{M} and $\mathcal{\tilde{M}}$ rationals func⁺

$$\mathcal{M}(s,t;\sigma,\tau) = \hat{I}$$

$$\mathcal{M}(eta s,eta t;\sigma, au)\sim O(eta)$$
 .

poles at s, t = 2, s + t = 6

$$\tau)\widehat{V} + (\tau^2 - \tau - \sigma\tau)\widehat{U}$$
$$\widehat{\mathcal{V}V} + \sigma\widehat{V^2} + \sigma\tau\widehat{U^2}$$

$$= \widetilde{\mathcal{M}}(s-2m,t-2n)$$

$$\left(\frac{-s}{2}\right)_{m}^{2} \left(\frac{4-t}{2}\right)_{n}^{2} \left(\frac{s+t-4}{2}\right)_{2-m-n}^{2}$$

Consistency conditions/ symmetry requirements translated into a well de' d mathematical pro^k

Toy model for mathemat⁷

 \mathcal{M} and $\mathcal{\tilde{M}}$ rationals func^{+'}

$$\mathcal{M}(s,t;\sigma,\tau) = \hat{I}$$

 $\mathcal{M}(\beta s, \beta t; \sigma, \tau) \sim O(\beta)$.

poles at s, t = 2, s + t = 6

example w/ spherical symmetry

Solution

$$\tau)\widehat{V} + (\tau^2 - \tau - \sigma\tau)\widehat{U}$$
$$\widehat{UV} + \sigma\widehat{V^2} + \sigma\tau\widehat{U^2}$$

$$= \widetilde{\mathcal{M}}(s-2m,t-2n)$$

$$\left(\frac{-s}{2}\right)_{m}^{2} \left(\frac{4-t}{2}\right)_{n}^{2} \left(\frac{s+t-4}{2}\right)_{2-m-n}^{2}$$

Consistency conditions/ symmetry requirements translated into a well de' d mathematical pro^k

Toy model for mathemat[;]

 \mathcal{M} and $\mathcal{\tilde{M}}$ rationals func⁺

$$\mathcal{M}(s,t;\sigma,\tau) = \hat{I}$$

 $\mathcal{M}(\beta s, \beta t; \sigma, \tau) \sim O(\beta)$.

poles at s, t = 2, s + t = 6

example w/ spherical symmetry

Solution

$$\tilde{\mathcal{M}} = \frac{C}{(s-2)(t-2)(s+t-6)} \qquad \stackrel{\tau)\widehat{V} + (\tau^2 - \tau - \sigma\tau)\widehat{U}}{\widehat{\mathcal{W}} + \sigma\widehat{V^2} + \sigma\tau\widehat{U^2}}$$

$$= \widetilde{\mathcal{M}}(s-2m,t-2n)$$

$$\left(\frac{-s}{2}\right)_{m}^{2} \left(\frac{4-t}{2}\right)_{n}^{2} \left(\frac{s+t-4}{2}\right)_{2-m-n}^{2}$$

