

Kazan Federal University

A joint SRG/eROSITA + ZTF search: Discovery of two eclipsing cataclysmic variables SRGeJ045359.9+622444 and SRGeJ041130.3+685350

Dr. Ilkham Galiullin

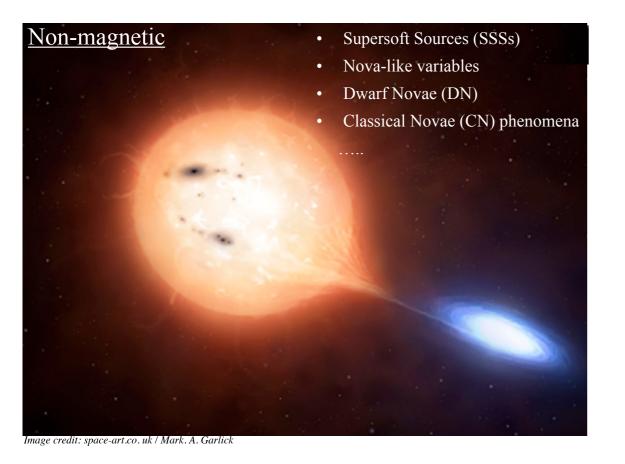
Research group leader at Kazan Federal University

E-mail: IlhIGaliullin@kpfu.ru

Collaborators: A. C. Rodriguez¹, M. Gilfanov^{2,3}, S. R. Kulkarni¹, R. Sunyaev^{2,3,4}, I. Bikmaev^{5,6}, L. Yungelson⁷, J. van Roestel¹, B. T. Gänsicke⁸, I. Khamitov⁵, P. Szkody⁹, K. El-Badry¹, I. Caiazzo¹, M. J. Graham¹, R. R. Laher , T. A. Prince¹, R. Riddle¹, Z. P. Vanderbosch¹, A. Wold¹, M. Suslikov⁵, M. Gorbachev⁵, R. Gumerov^{5,6}, E. Irtuganov⁵, P. Medvedev², B. Rusholme¹, N. Sakhibullin^{5,6}, A. Sklyanov⁵, Z. P. Vanderbosch¹.

(1) California Institute of Technology, USA; 2) Space Research Institute, Russian Academy of Sciences, Russia; (3) Max Planck Institute for Astrophysics, Germany; (4) Institute for Advanced Study, Princeton, USA; (5) Kazan Federal University, Russia; (6) The Academy of Sciences of the Republic of Tatarstan, Russia; (7) Institute of Astronomy, Russian Academy of Sciences; (8) University of Warwick, UK; (9) University of Washington, USA;

Overview:


- Accreting White Dwarfs
- A Joint SRG/eROSITA + ZTF Survey
- SRGeJ045359.9+622444 (SRGeJ0453)
- SRGeJ041130.3+685350 (SRGeJ0411)

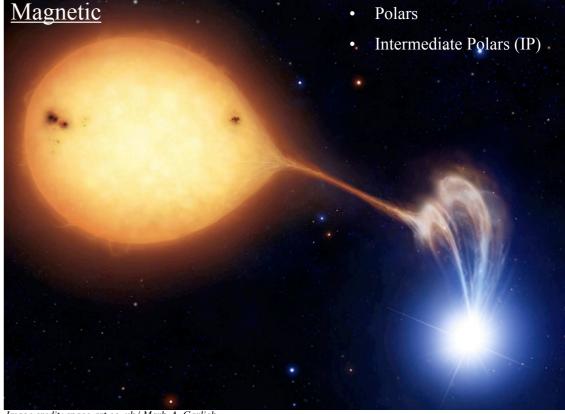
Overview:

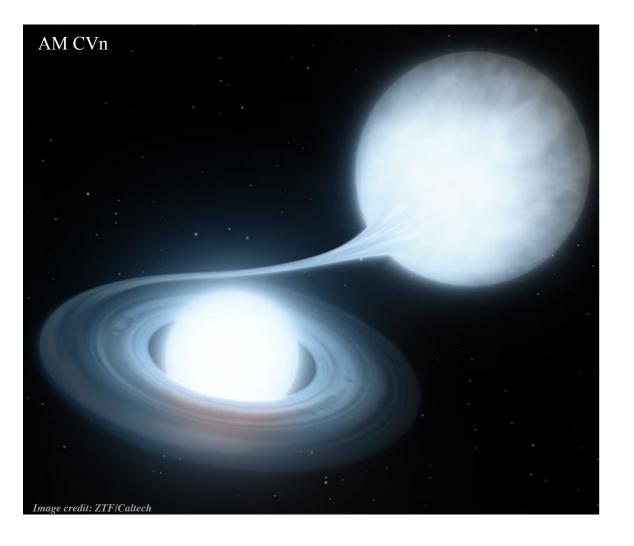
- Accreting White Dwarfs
- A Joint SRG/eROSITA + ZTF Survey
- SRGeJ045359.9+622444 (SRGeJ0453)
- SRGeJ041130.3+685350 (SRGeJ0411)

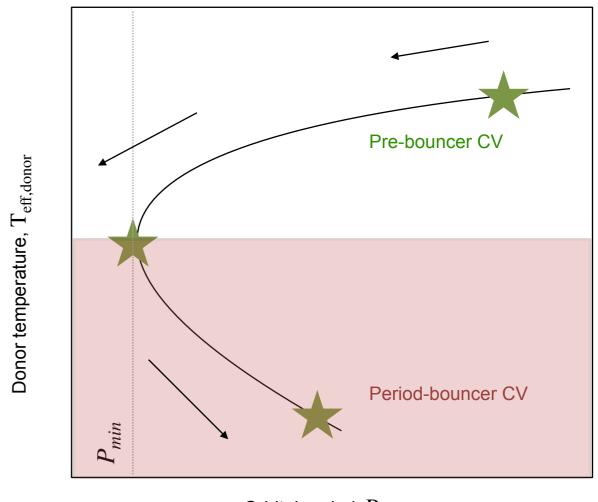
Accreting White Dwarfs

- White Dwarfs (WDs) are the final stage of the evolution of low and intermediate-mass stars $M_{star} \lesssim 8 \sim 10 M_{\odot}$.
- Binary system: WD accretes material from a companion star (Roche-lobe overflow/stellar wind).

Broad classification of accreting WDs




Image credit: space-art.co.uk / Mark.A. Garlick


Two primary energy sources in accreting WDs:

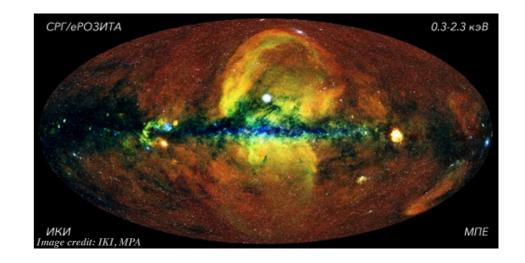
- Accretion disk, boundary layer (BL), corona (DN)
- Nuclear fusion of H/He on WD surface (SSS or post-nova SSS phase)

HEA and Cosmology in the era of all-sky surveys, 7–11th October 2024

Rare type of Cataclysmic Variables

 $\label{eq:orbital period, P_{orb}} Orbital \ period, \ P_{orb}$

- AM CVn stars are ultra-compact binaries, where a WD accretes material from a helium-dominated, Roche-lobe-filling donor. The orbital period of these systems lies in the 5.4–67.8 minutes range (for recent reviews, see Solheim 2010; Ramsay et al. 2018).
- CVs that have evolved past the period minimum during their lifetimes are predicted to be systems with a brown dwarf donor. So called **«period-bouncers»** CVs (e.g., Paczynski 1976).
- Less than ~ 20 40 objects are reported in the literature.

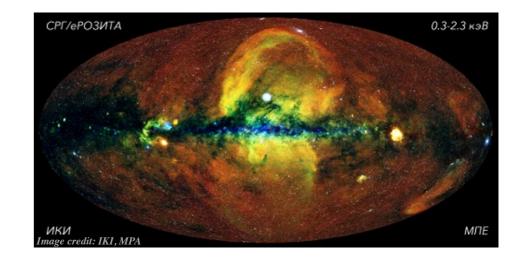

Overview:

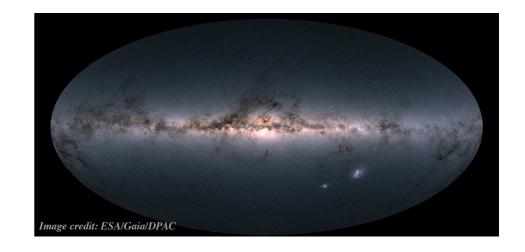
- Accreting White Dwarfs
- A Joint SRG/eROSITA + ZTF Survey
- SRGeJ045359.9+622444 (SRGeJ0453)
- SRGeJ041130.3+685350 (SRGeJ0411)

A Joint SRG/eROSITA + ZTF Survey

(a) RU Consortium of SRG/eROSITA (Galactic $0^{\circ} < l < 180^{\circ}$; $b > 10^{\circ}$):

- Field A: 600 deg^2
- Field B: 600 deg^2


A Joint SRG/eROSITA + ZTF Survey


(a) RU Consortium of SRG/eROSITA (Galactic $0^{\circ} < l < 180^{\circ}$; $b > 10^{\circ}$):

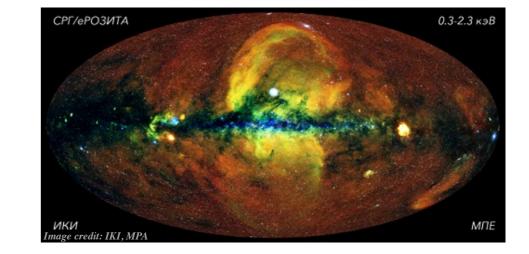
- Field A: 600 deg^2
- Field B: 600 deg^2

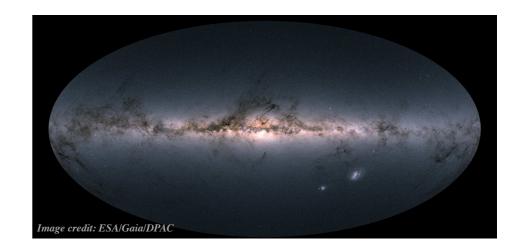
(b) Crossmatch with Gaia DR3

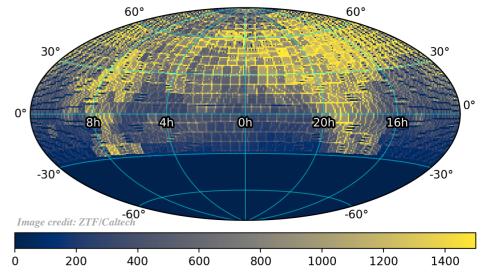
- Only Galactic sources, just above the WD track on the HR diagram
- High X-ray to optical ratio Fx/Fopt

A Joint SRG/eROSITA + ZTF Survey

(a) RU Consortium of SRG/eROSITA (Galactic $0^{\circ} < l < 180^{\circ}$; $b > 10^{\circ}$):

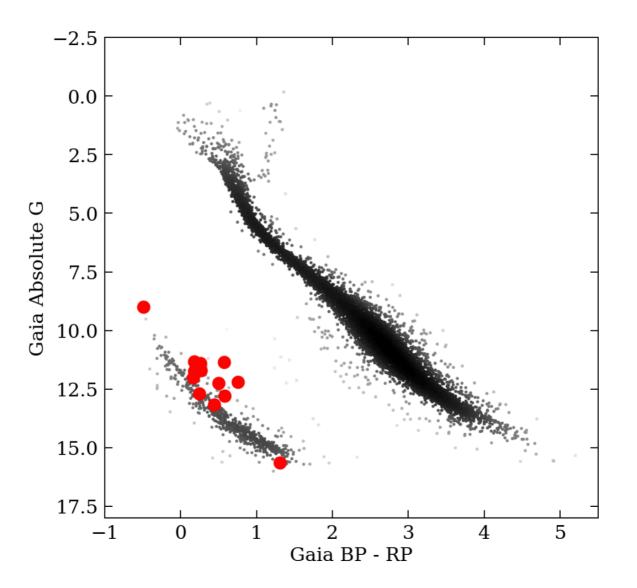

- Field A: 600 deg^2
- Field B: 600 deg^2


(b) Crossmatch with Gaia DR3


- Only Galactic sources, just above the WD track on the HR diagram
- High X-ray to optical ratio Fx/Fopt

- (c) Crossmatch with Zwicky Transient Facility (ZTF):
 - Caltech proprietary data included

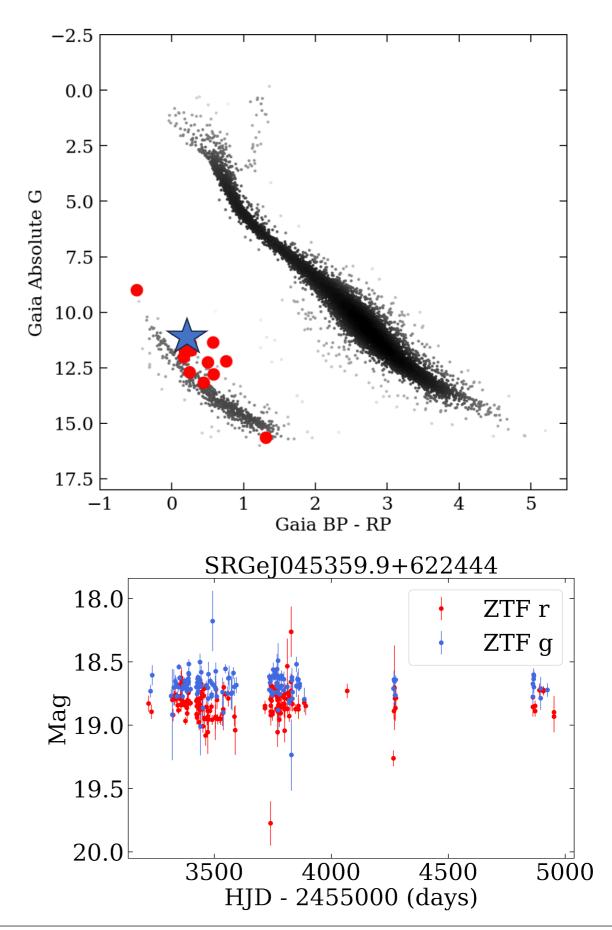
Ilkham Galiullin (KFU): IlhIGaliullin@kpfu.ru



Results on Field A

- Nine CV candidates were selected above the WD region on the HR diagram.
- We undertook optical spectroscopic follow-up observations with the 10m Keck I telescope using the Low-Resolution Imaging Spectrometer and the 5m Hale telescope using the Double Spectrograph (DBSP).

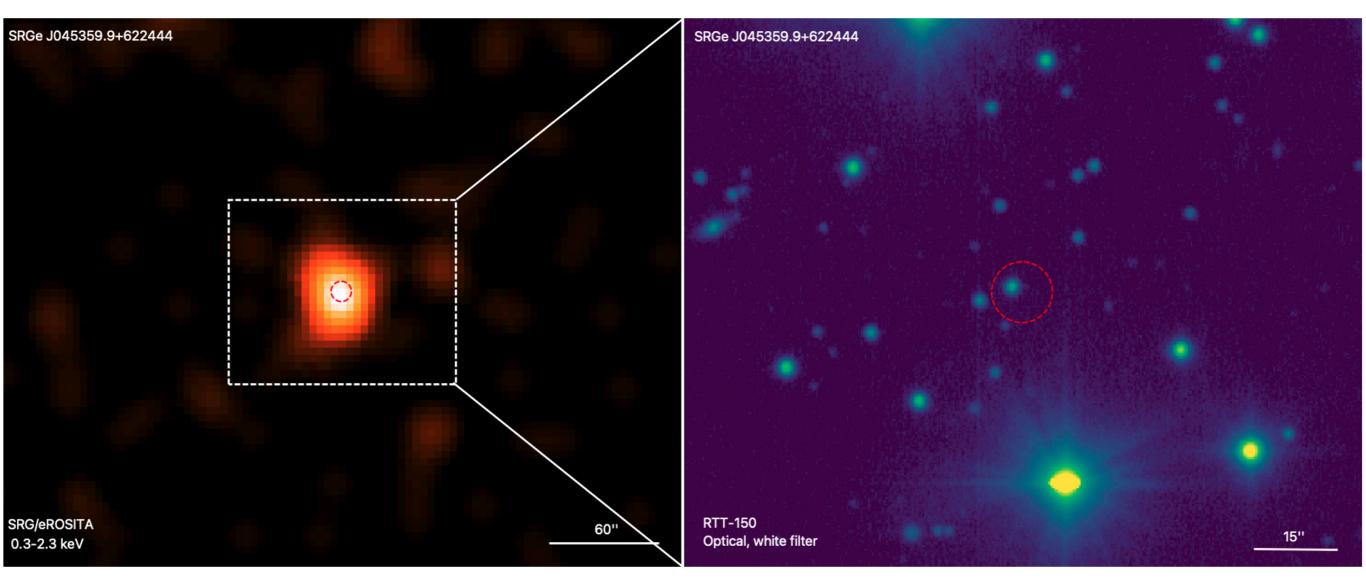
- Additional photometric follow-up was performed with Caltech High-speed Multi-color camERA (CHIMERA) and 1.5m RTT-150 (TUBITAK observatory).
- Five out of nine objects are confirmed to be new CVs.



HR diagram with Gaia sources within 100 pc with significantly measured parallaxes (black color) (parallax_over_error > 3, Gaia Collaboration et al., 2023). Red dots: CV candidates found in Field A.

Overview:

- Accreting White Dwarfs
- A Joint SRG/eROSITA + ZTF Survey
- SRGeJ045359.9+622444 (SRGeJ0453)
- SRGeJ041130.3+685350 (SRGeJ0411)


SRGeJ045359.9+622444

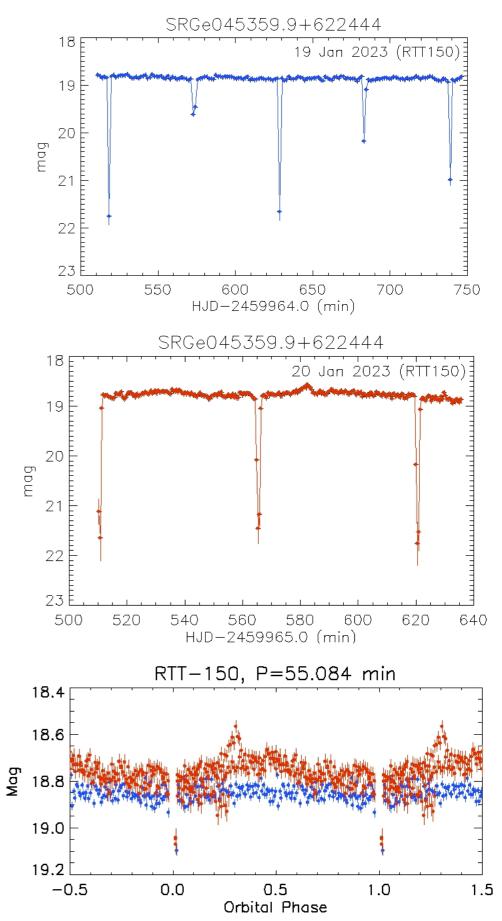
- High ratio of X-ray flux to optical flux $F_X/F_{opt} \approx 0.12$.
- Lack of optical outbursts in ZTF light curves.
- Distance to the object \sim 240 pc.

Arxiv: 2306.13133

SRGeJ045359.9+622444

False-colour X-ray image of SRGeJ0453 in the 0.3–2.3 keV energy band from combined data of four all-sky surveys of SRG/eROSITA.

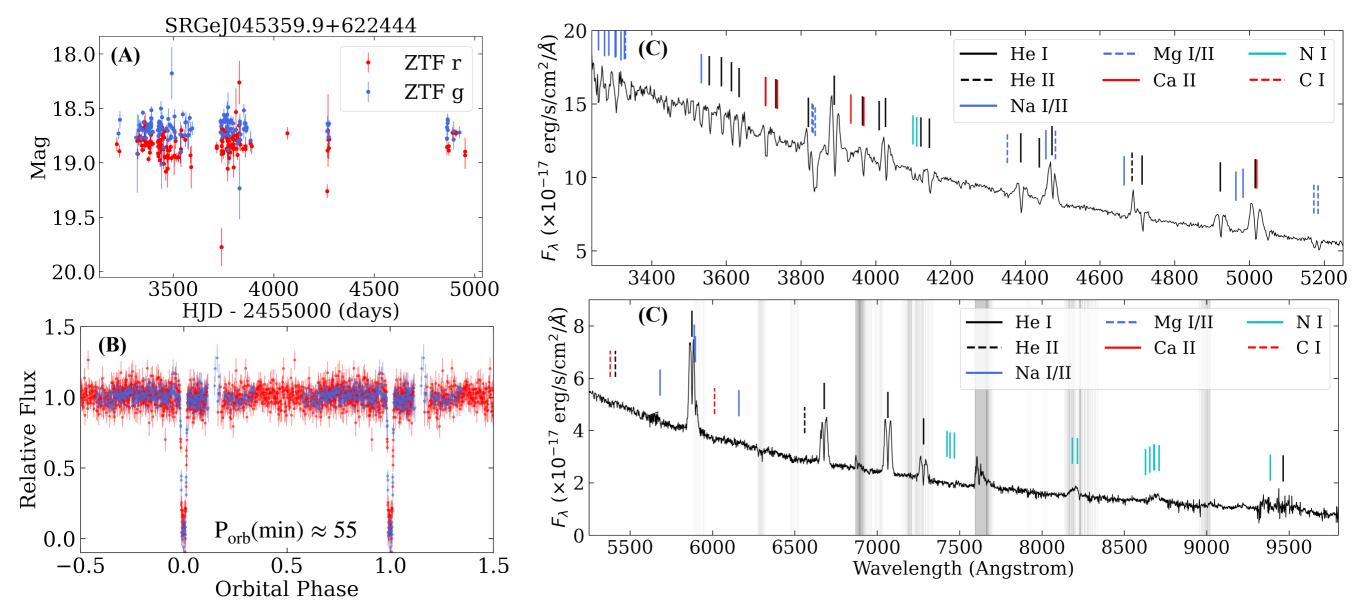
Composite optical image around SRGeJ0453 based on RTT-150/ TFOSC data. A pseudo-colour image was composed using gri filters. The magenta circle: R98 = 5.6".


• ~40 optical sources, only 1 X-ray source

Optical light curves and period determination

• We observed SRGeJ0453 with the 1.5m RTT-150 (TUBITAK observatory) and high-speed photometry using the Caltech High-speed Multi-color camERA (Palomar Observatory).

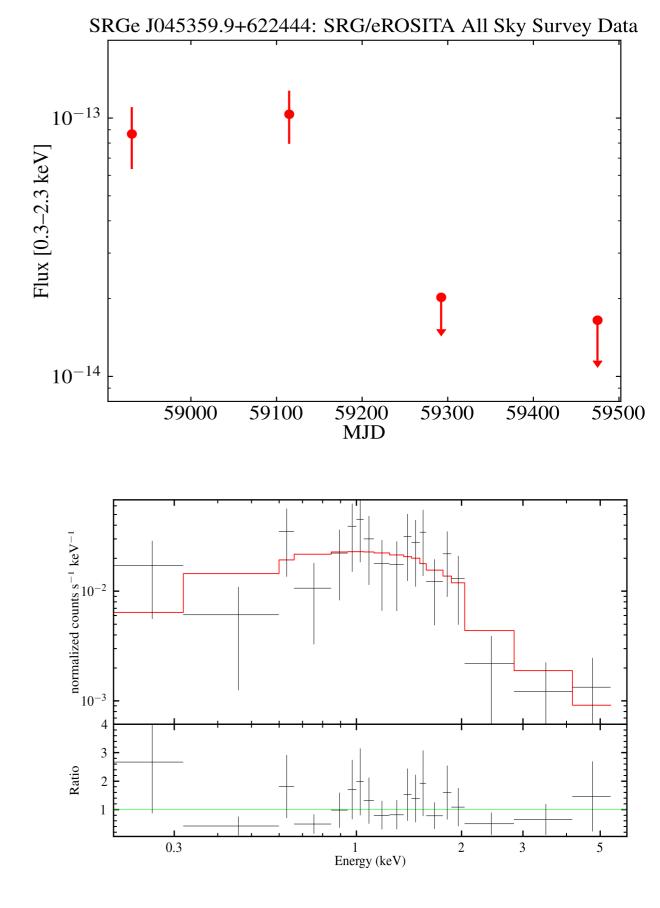
• The light curve shows low-amplitude ($\approx 0.1 - 0.3^m$) flickering, possibly caused by an accretion disk. During eclipses, the light curve shows deep dips ($\approx 3^m$).


• The orbital period of SRGeJ0453 is \sim 55 minutes.

HEA and Cosmology in the era of all-sky surveys, 7–11th October 2024

Arxiv: 2306.13133

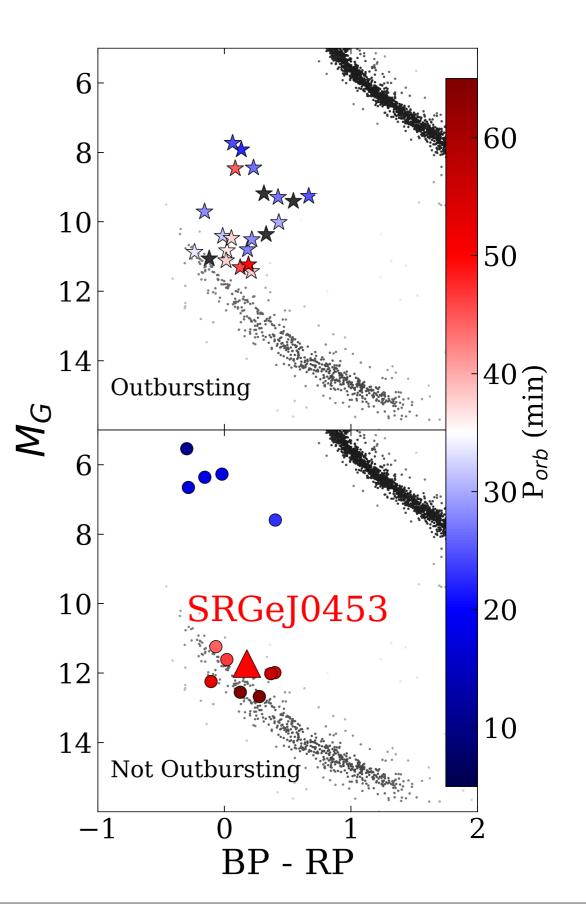
First SRG/eROSITA-discovered AM CVn: SRGeJ045359.9+622444


(A) ZTF light curves on g, r filters. (B) The phase-folded CHIMERA r and g filter data. (C) Keck I /LRIS phase-averaged optical spectrum.

- The optical spectrum of SRGeJ0453 shows common features of AM CVn systems: a blue continuum with prominent He lines and an absence of H lines.
- Optical spectroscopy suggests that the donor star of SRGeJ0453 could have initially been a He star or a He white dwarf.
- SRGeJ0453 is the ninth eclipsing AM CVn system published to date.

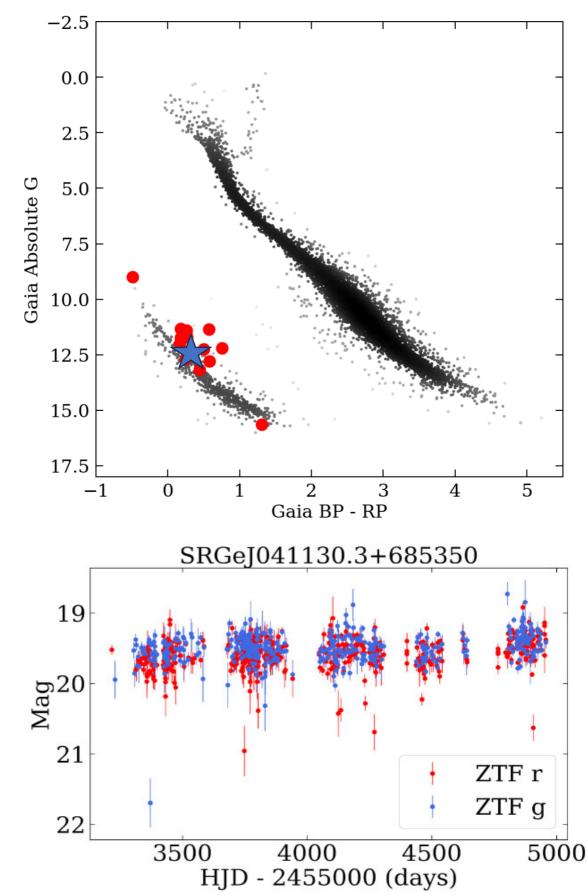
X-ray spectrum of SRGeJ045359.9+622444

- The X-ray light curve shows the variability within four sky surveys of SRG/eROSITA.
- X-ray luminosity (0.3-2.3 keV): $\approx 6 \times 10^{29}$ erg/s.
- Accretion rate: $\approx (2 10) \times 10^{-12} \text{ M}_{\odot}/\text{yr}.$
- The approximation of the X-ray spectrum of SRGeJ0453 by the power-law model gives a photon index of $\Gamma \sim 1$.

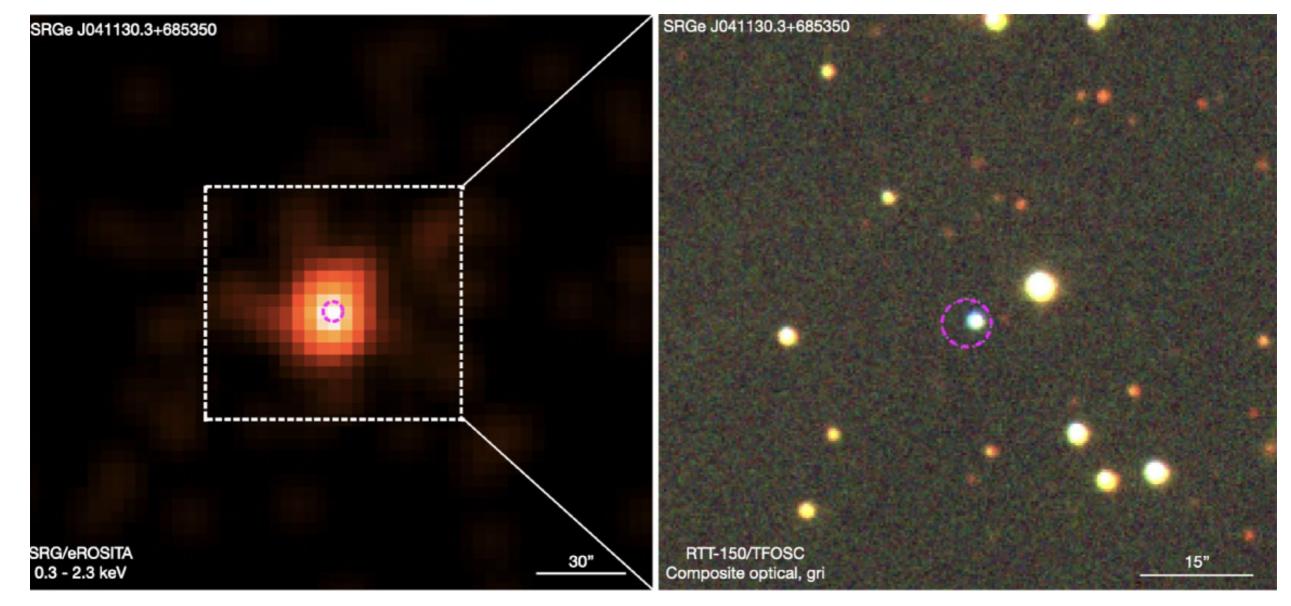

• The X-ray spectra of several IPs and polars are approximated by a photon index $\Gamma \sim 1$, and nonmagnetic systems by $\Gamma \sim 2$ (e.g., Galiullin & Gilfanov 2021).

Position of SRGeJ0453 in the Gaia HR diagram

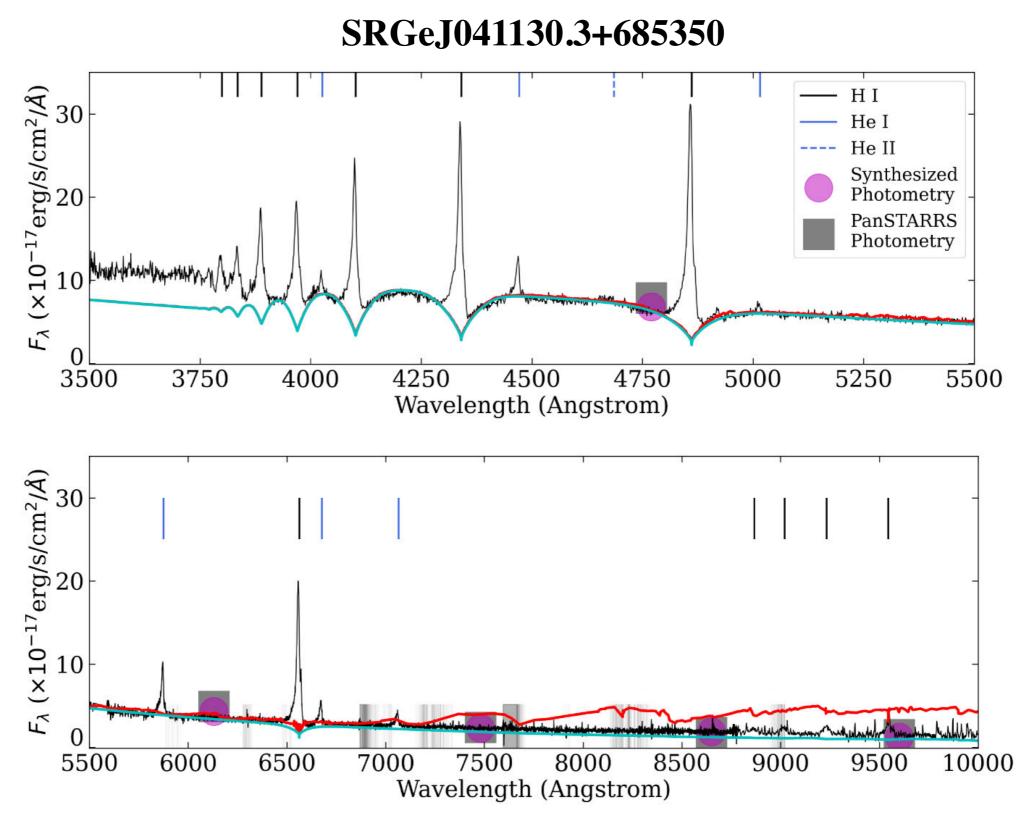
• Position of SRGeJ0453 in the 100 pc Gaia HR diagram alongside previously known AM CVn systems with a significant Gaia parallax (parallax_over_error > 3). The nonoutbursting population occupies distinct portions of the phase space.


• How many AM CVns do we expect in the Milky Way?

Overview:


- Accreting White Dwarfs
- A Joint SRG/eROSITA + ZTF Survey
- SRGeJ045359.9+622444 (SRGeJ0453)
- SRGeJ041130.3+685350 (SRGeJ0411)

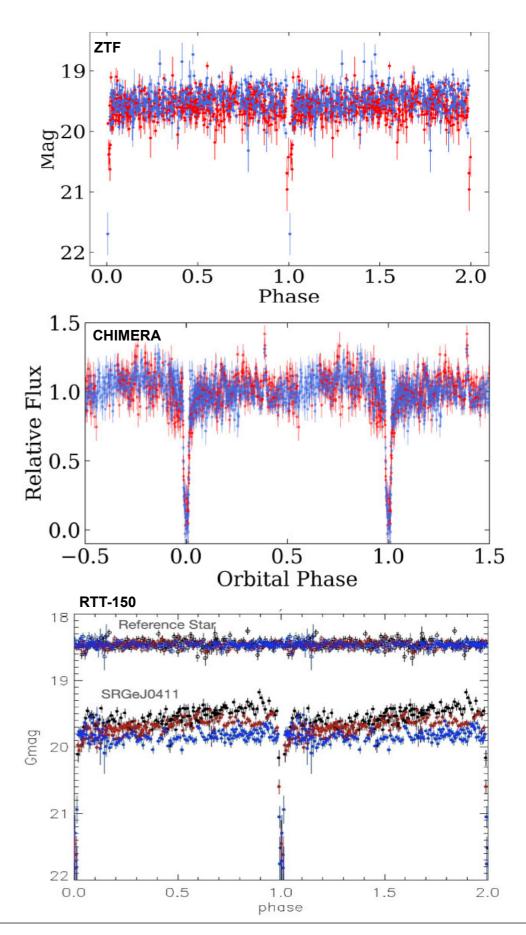
SRGeJ041130.3+685350


- High ratio of X-ray flux to optical flux $F_X/F_{opt} \approx 0.60$.
- Lack of optical outbursts in ZTF light curves.
- Distance to the object \sim 324 pc.

SRGeJ041130.3+685350

False-colour X-ray image of SRGeJ0453 in the 0.3–2.3 keV energy band from combined data of four all-sky surveys of SRG/eROSITA.

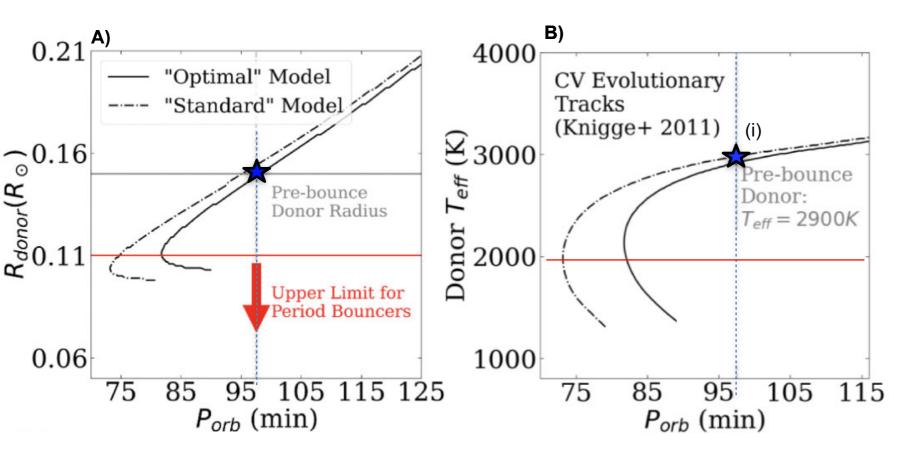
Composite optical image around SRGeJ0453 based on RTT-150/ TFOSC data. A pseudo-colour image was composed using gri filters. The magenta circle: R98 = 3.3".


Keck I/LRIS optical spectrum of SRGeJ0411. Grey lines are locations where there are telluric features from the Keck Telluric Line List.

• The optical spectrum of SRGeJ0411 shows prominent hydrogen and helium emission lines, typical for CVs.

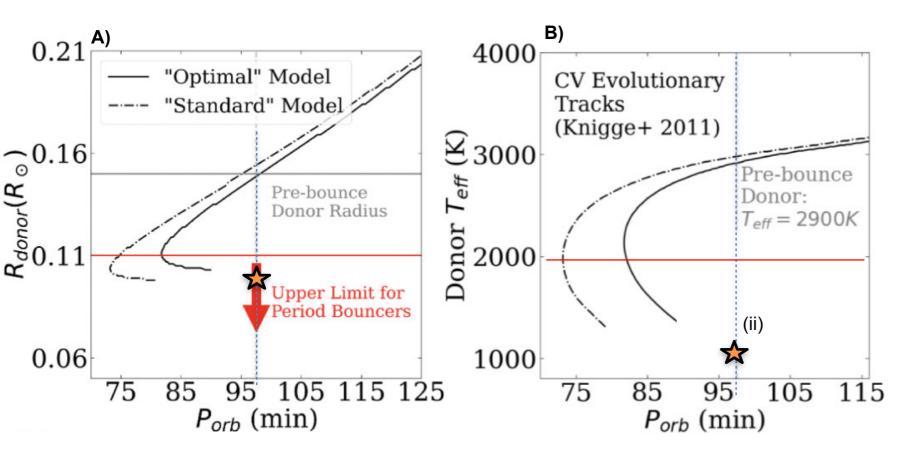
Optical light curves and period determination

- We observed SRGeJ0411 with the 1.5m RTT-150 (TUBITAK observatory) and high-speed photometry using the Caltech High-speed Multi-color camERA (Palomar Observatory).
- The light curve shows low-amplitude ($\approx 0.2 0.5^m$) flickering, possibly caused by an accretion disk. During eclipses, the light curve shows deep dips ($\approx 2^m$).
- The orbital period of SRGeJ0411 is ~97.5 minutes.


• The orbital period minimum for CVs is ~80 minutes (Knigge 2006, Gansicke et al. 2009).

HEA and Cosmology in the era of all-sky surveys, 7–11th October 2024

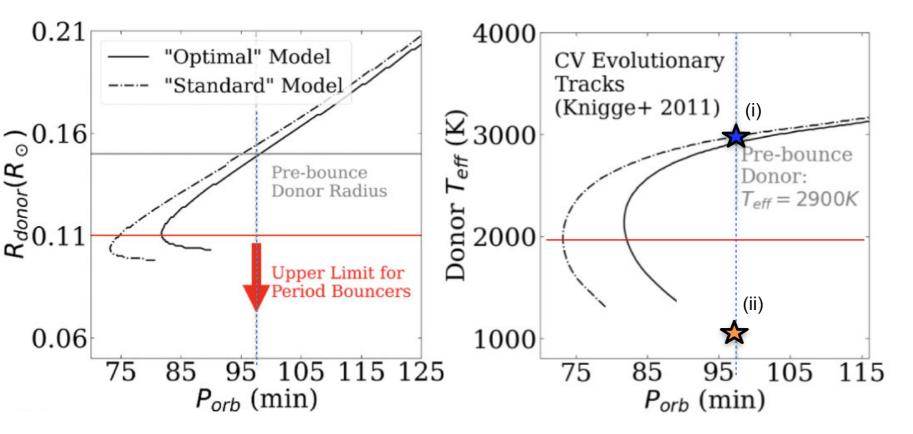
Arxiv: 2401.04178


I. Estimation of binary parameters of SRGeJ041130.3+685350

The CV evolutionary tracks from Knigge et al. (2011): A) and B) Donor radius and donor effective temperature as a function of orbital period.

- From the CV evolutionary tracks, the donor parameters for CV with an orbital period of \approx 97.5 should be:
 - (i) $R_{donor} \approx 0.15 R_{\odot} \mu T_{eff,donor} \approx 2,900 K$ (Pre-bounce donor; before passing the P_{min} during the evolution);

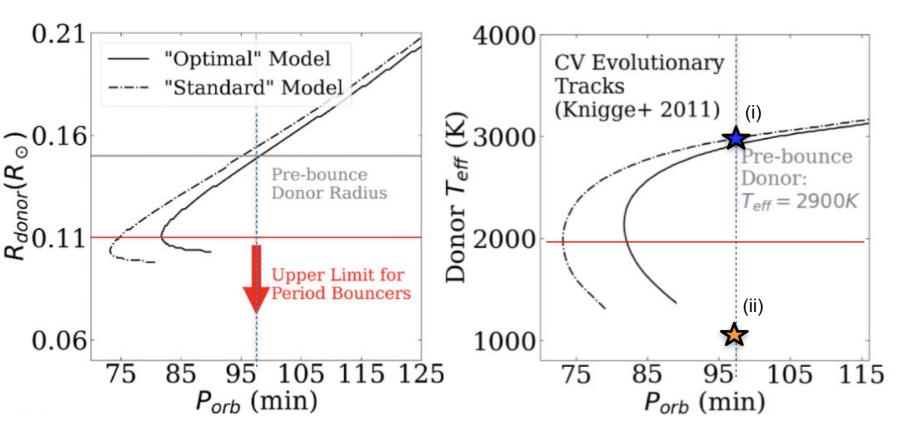
II. Estimation of binary parameters of SRGeJ041130.3+685350



The CV evolutionary tracks from Knigge et al. (2011): A) and B) Donor radius and donor effective temperature as a function of orbital period.

• From the CV evolutionary tracks, the donor parameters for CV with an orbital period of \approx 97.5 should be:

(ii) $R_{donor} \lesssim 0.11 R_{\odot} \mu T_{eff,donor} \lesssim 2,000 K$ (Donor of period bouncer CV; after passing the P_{min} during the evolution).


III. Estimation of binary parameters of SRGeJ041130.3+685350

The CV evolutionary tracks from Knigge et al. (2011): A) and B) Donor radius and donor effective temperature as a function of orbital period.

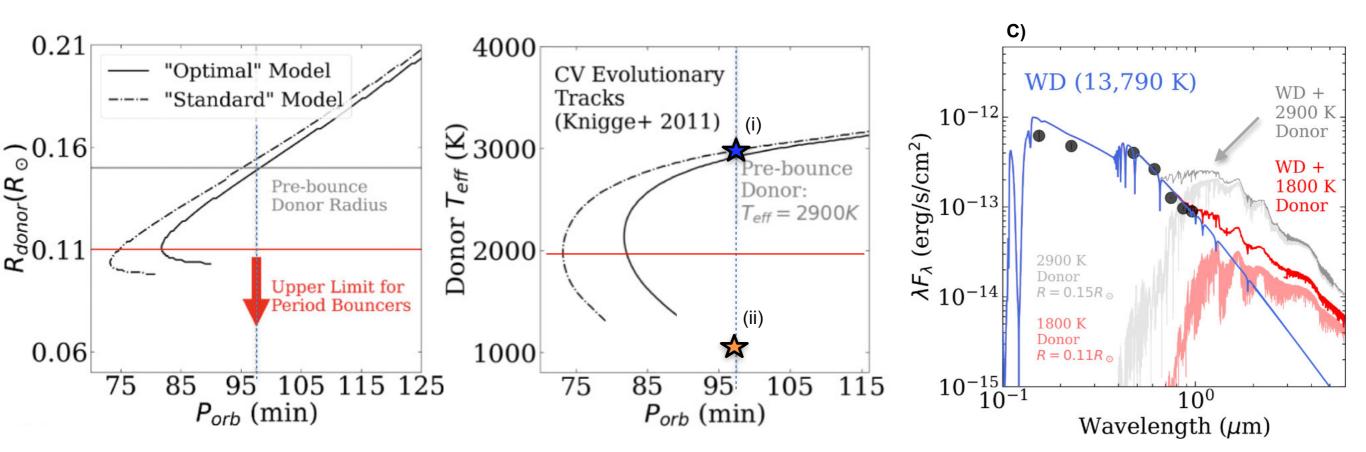
- From the CV evolutionary tracks, the donor parameters for CV with an orbital period of \approx 97.5 should be:
 - (i) $R_{donor} \approx 0.15 R_{\odot} \mu T_{eff,donor} \approx 2,900 K$ (Pre-bounce donor; before passing the P_{min} during the evolution);
 - (ii) $R_{donor} \lesssim 0.11 R_{\odot} \mu T_{eff,donor} \lesssim 2,000 K$ (Donor of period bouncer CV; after passing the P_{min} during the evolution).

IV. Estimation of binary parameters of SRGeJ041130.3+685350

The CV evolutionary tracks from Knigge et al. (2011): A) and B) Donor radius and donor effective temperature as a function of orbital period.

From the CV evolutionary tracks, the donor parameters for CV with an orbital period of \approx 97.5 should be:

- (i) $R_{donor} \approx 0.15 R_{\odot} \ \mbox{m} T_{eff,donor} \approx 2,900 \ \mbox{K}$ (Pre-bounce donor; before passing the P_{min} during the evolution); (ii) $R_{donor} \lesssim 0.11 R_{\odot} \ \mbox{m} T_{eff,donor} \lesssim 2,000 \ \mbox{K}$ (Donor of period bouncer CV; after passing the P_{min} during the evolution).
- The model with donor parameters from the case (ii) better approximates the observed SED of SRGeJ0411.


WD:
$$T_{eff} \approx 13,790 \text{ K}; M_{WD} \approx 0.84 \text{ } M_{\odot}; R_{WD} \approx 0.01 \text{ } R_{\odot}; \log(g) = 8 \text{ (fixed)}$$

Donor: a) for $R_{donor} = 0.11 R_{\odot} (T_{eff,donor} \leq 1,800 K)$, b) for $R_{donor} = 0.15 R_{\odot} (T_{eff,donor} \leq 1,600 K)$.

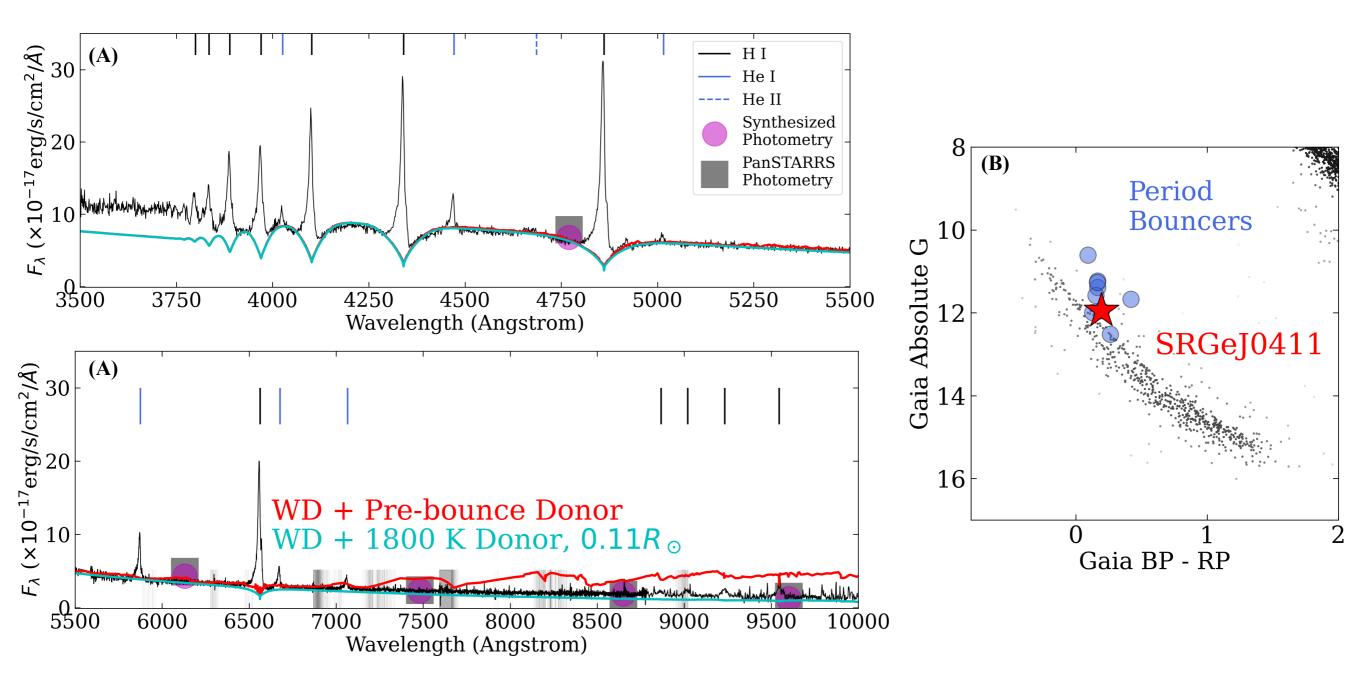
SED modeling without considering the contribution of the accretion disk, boundary layer, and hot spot!

HEA and Cosmology in the era of all-sky surveys, 7–11th October 2024

IV. Estimation of binary parameters of SRGeJ041130.3+685350

The CV evolutionary tracks from Knigge et al. (2011): A) and B) Donor radius and donor effective temperature as a function of orbital period; C) The observed UV + optical SED of SRGeJ0411.

- From the CV evolutionary tracks, the donor parameters for CV with an orbital period of \approx 97.5 should be:
 - (i) $R_{donor} \approx 0.15 R_{\odot} \mu T_{eff,donor} \approx 2,900 K$ (Pre-bounce donor; before passing the P_{min} during the evolution);
 - (ii) $R_{donor} \lesssim 0.11 R_{\odot} \ \text{M} T_{eff,donor} \lesssim 2,000 \text{ K}$ (Donor of period bouncer CV; after passing the P_{min} during the evolution).
- The model with donor parameters from the case (ii) better approximates the observed SED of SRGeJ0411.


WD:
$$T_{eff} \approx 13,790 \text{ K}; M_{WD} \approx 0.84 \text{ } M_{\odot}; R_{WD} \approx 0.01 \text{ } R_{\odot}; \log(g) = 8 \text{ (fixed)}$$

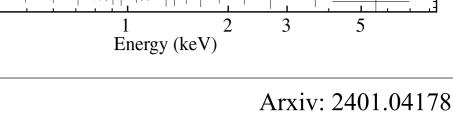
Donor: a) for $R_{donor} = 0.11 R_{\odot} (T_{eff,donor} \leq 1,800 K)$, b) for $R_{donor} = 0.15 R_{\odot} (T_{eff,donor} \leq 1,600 K)$.

SED modeling without considering the contribution of the accretion disk, boundary layer, and hot spot!

HEA and Cosmology in the era of all-sky surveys, 7–11th October 2024

SRG/eROSITA-discovered period-bouncer CV: SRGeJ041130.3+685350

(A) Keck I/LRIS optical spectrum of SRGeJ0411. (B) Position of SRGeJ0411 in the 100 pc Gaia HR diagram.


• The binary parameters ($T_{eff,donor} \leq 1,800 \text{ K}$, $M_{donor} \leq 0.04 \text{ M}_{\odot}$) are consistent with evolutionary models for post-period minimum CVs, suggesting that SRGeJ0411 is a new period bouncer.

X-ray spectrum of SRGeJ041130.3+685350

• The X-ray light curve shows the variability within four sky surveys of SRG/eROSITA.

• X-ray luminosity (0.3-2.3 keV): $\approx 3 \times 10^{30}$ erg/s.

• The approximation of the X-ray spectrum of SRGeJ0411 by the power-law model gives a photon index of $\Gamma \sim 1$.

Flux [0.3–2.3 keV] 59200 MJD 59000 59100 59300 59400 58900 normalized counts s⁻¹ keV⁻¹ 10^{-1} 10^{-2} 10^{-3} Ratio 0.3

Conclusion

- Discoveries:
 - SRGeJ0453 is the first SRG/eROSITA-discovered AM CVn. Also, the 9th published eclipsing AM CVn.
 - SRGeJ0411 is a new period-bouncer CV discovered in the SRG/eROSITA all-sky survey.

- The multiwavelength approach allows for detecting and investigating more CVs missed in one-band surveys alone.
- Future transient optical sky surveys, such as using the Rubin Observatory's Legacy Survey of Space and Time (LSST), with a combination of X-ray data (SRG/eROSITA, Chandra, XMM-Newton etc), would likely have improved success in detecting the accreting binary systems in the near future.

Acknowledgements

THE ASTROPHYSICAL JOURNAL, 954:63 (19pp), 2023 September 1 © 2023. The Author(s). Published by the American Astronomical Society. OPEN ACCESS

https://doi.org/10.3847/1538-4357/ace698

SRGeJ045359.9+622444: A 55 Minute Period Eclipsing AM Canum Venaticorum Star Discovered from a Joint SRG/eROSITA + ZTF Search

Antonio C. Rodriguez¹, Ilkham Galiullin², Marat Gilfanov^{3,4}, Shrinivas R. Kulkarni¹, Irek Khamitov^{2,5}, Ilfan Bikmaev^{2,5}, Jan van Roestel⁶, Lev Yungelson⁷, Kareem El-Badry^{1,8}, Rashid Sunayev^{3,4}, Thomas A. Prince⁹, Mikhail Buntov³, Ilaria Caiazzo¹, Andrew Drake¹, Mark Gorbachev², Matthew J. Graham¹, Rustam Gumerov^{2,5}, Eldar Irtuganov², Russ R. Laher¹⁰, Frank J. Masci¹⁰, Pavel Medvedev³, Josiah Purdum¹, Nail Sakhibullin^{2,5}, Alexander Sklyanov², Roger Smith¹, Paula Szkody¹¹, and Zachary P. Vanderbosch¹, Kazan Federal University, Kremlevskaya Street 18, 420008, Kazan, Russia ³ Space Research Institute of Technology, 1200 E. California Boulevard, Pasadena, CA, 91125, USA; acrodrig@caltech.edu ² Kazan Federal University, Kremlevskaya Street 18, 420008, Kazan, Russia ³ Space Research Institute for Astrophysics, Karl-Schwarzschild-Str 1, Garching b. Muenchen D-85741, Germany ³ Academy of Sciences of Tatarstan Republic, Baumana Street 20, Kazan 420111, Russia ⁶ Anton Pannekoek Institute for Astronomy, University of Amsterdam, 1090 GE Amsterdam, The Netherlands ⁷ Institute of Astronomy, Russian Academy of Sciences, 48 Pyatnitskaya Street, Moscow 109017, Russia ⁸ Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA ⁹ Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA ¹⁰ DeAC, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA ¹⁰ Department of Astronomy, University of Washington, 3910 15th Avenue NE, Seattle, WA 98195, USA *Received 2023 June 21; accepted 2023 July 10; published 2023 August 23*

Monthly Notice

ROYAL ASTRONOMICAL SOCIETY MNRAS **528**, 676–692 (2024) Advance Access publication 2024 January 4

https://doi.org/10.1093/mnras/stae012

A joint SRG/eROSITA + ZTF search: Discovery of a 97-min period eclipsing cataclysmic variable with evidence of a brown dwarf secondary

Ilkham Galiullin⁹,¹* Antonio C. Rodriguez,² Shrinivas R. Kulkarni,² Rashid Sunyaev,^{3,4,5} Marat Gilfanov,^{3,4} Ilfan Bikmaev,^{1,6} Lev Yungelson,⁷ Jan van Roestel[®],⁸ Boris T. Gänsicke[®],⁹ Irek Khamitov,^{1,6} Paula Szkody,¹⁰ Kareem El-Badry,² Mikhail Suslikov,¹ Thomas A. Prince,¹¹ Mikhail Buntov,³ Ilaria Caiazzo,² Mark Gorbachev,¹ Matthew J. Graham,² Rustam Gumerov,^{1,6} Eldar Irtuganov,¹ Russ R. Laher,¹² Pavel Medvedev,³ Reed Riddle,² Ben Rusholme,¹² Nail Sakhibullin,^{1,6} Alexander Sklyanov¹ and Zachary P. Vanderbosch² ¹Kazan Federal University, Kremlevskaya Street 18, 420008 Kazan, Russia ²Department of Astronomy, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA ³Space Research Institute, Russian Academy of Sciences, Profsoyuznaya 84/32, 117997 Moscow, Russia ⁴Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str 1, Garching b. Muenchen D-85741, Germany ⁵Institute for Advanced Study, 1st Einstein Drive, Princeton, NJ 08540, USA ⁶The Academy of Sciences of the Republic of Tatarstan, Baumana Street 20, Kazan 420111, Russia ⁷Institute of Astronomy, Russian Academy of Sciences, 48 Pyatnitskaya Street, Moscow 109017, Russia ⁸Anton Pannekoek Institute for Astronomy, University of Amsterdam, NL-1090 GE Amsterdam, The Netherlands ⁹Department of Physics, University of Warwick, Coventry CV4 7AL, UK ¹⁰Department of Astronomy, University of Washington, 3910 15th Avenue NE, Seattle, WA 98195, USA ¹¹Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA ¹²IPAC, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA

Accepted 2023 December 28. Received 2023 November 23; in original form 2023 September 29

+ observing staff from Keck, Palomar, RTT-150

Ilkham Galiullin (KFU): IlhIGaliullin@kpfu.ru

Thank you!

HEA and Cosmology in the era of all-sky surveys, 7–11th October 2024

Ilkham Galiullin (KFU): IlhIGaliullin@kpfu.ru