

Reflection-dominated Compton-thick AGN Candidates in the SRG/eROSITA Lockman Hole Survey

M. I. Belvedersky, S. D. Bykov, M. R. Gilfanov, P. S. Medvedev, R. A. Sunyaev

HEACOSS 2024

• Galactic absorption complicates observations

- Galactic absorption complicates observations
- N_H in LH is very low* → natural choice for the extragalactic studies

NH

2

*Lockman et al., 1986 HI4PI, 2016

- Galactic absorption complicates observations
- N_H in LH is very low* → natural choice for the extragalactic studies
- 6885 X-ray sources, 28 sq. degrees

*Lockman et al., 1986 HI4PI, 2016

Equatorial

2

NH

- Galactic absorption complicates observations
- N_H in LH is very low* → natural choice for the extragalactic studies
- 6885 X-ray sources, 28 sq. degrees
- Exposure time ~8 ks per point
 - *Lockman et al., 1986 HI4PI, 2016

NH

2

Unknown artist

- Galactic absorption complicates observations
- N_H in LH is very low* → natural choice for the extragalactic studies
- 6885 X-ray sources, 28 sq. degrees
- Exposure time ~8 ks per point

*Lockman et al., 1986 HI4PI, 2016

- Rising spectrum below 10 keV
- Hard X-ray emission above 10 keV
- Iron emission line
 (~1 keV equivalent width)

- Rising spectrum below 10 keV
- Hard X-ray emission above 10 keV
- Iron emission line
 (~1 keV equivalent width)

- Rising spectrum below 10 keV
- Hard X-ray emission above 10 keV

Reflected

component

LOS

Iron emission line
 (~1 keV equivalent width)

Transmitted

component

A tours in

section

mytorus model (Yaqoob 2012)

- Rising spectrum below 10 keV
- Hard X-ray emission above 10 keV

Reflected

component

LOS

Iron emission line
 (~1 keV equivalent width)

Transmitted

component

A tours in

section

mytorus model (Yaqoob 2012)

Spectral characteristics of the SRG/eROSITA LH catalog

 6500 point-like extragalactic sources, DL > 10

Spectral characteristics of the SRG/eROSITA LH catalog

- 6500 point-like extragalactic sources, DL > 10
- Median of source counts is ~40, complex models are inapplicable

Spectral characteristics of the SRG/eROSITA LH catalog

- 6500 point-like extragalactic sources, DL > 10
- Median of source counts is ~40, complex models are inapplicable
- phabs*po model: 291 sources have **F** upper limit below 1.3

upper error

Spectral characteristics of the SRG/eROSITA LH catalog

- 6500 point-like extragalactic sources, DL > 10
- Median of source counts is ~40, complex models are inapplicable
- phabs*po model: 291 sources have Γ upper limit below 1.3
- We need redshift to apply a model with the intrinsic absorption (N_H)

SRGz: Meshcheryakov et al., 2023

Intrinsic N_H can make spectral index lower

The model without intrinsic N_H

Intrinsic N_H can make spectral index lower

The model *without* intrinsic N_H

The model with intrinsic N_H (better fit)

Source classification based on spectral characteristics

Source category	Description	Total
Category 1	Reflection-dominated CT AGN candidates (intrinsic $N_{\rm H}$ is consistent with zero)	81
Category 2	Mildly obscured AGN candidates (intrinsic $N_{\rm H}$ is inconsistent with zero, but less than 10^{24} cm ⁻²)	49
Category 3	No redshift available (model without intrinsic $N_{\rm H}$ is applied)	161

Source classification based on spectral characteristics

Source category	Description	Total	Bright	
Category 1	Reflection-dominated CT AGN candidates (intrinsic $N_{\rm H}$ is consistent with zero)	81	9	
Category 2	Mildly obscured AGN candidates (intrinsic $N_{\rm H}$ is inconsistent with zero, but less than 10^{24} cm ⁻²)	49	14	
Category 3	No redshift available (model without intrinsic $N_{\rm H}$ is applied)	161	14	
Bright sample contains objects with more than 100 source counts in 0.3 – 9 keV range				

Observed energy, keV

Spectral characteristics of Category 1 and Category 2 sources

Spectral characteristics of Category 1 and Category 2 sources

Comparison with the XMM-Newton

only bright sources, only spec z

Category 1

Comparison with the XMM-Newton

only bright sources, only spec z

Category 1

Reflection-dominated CT AGN sky density estimation

$$F_{x, 0.5-2} > 1.5 \times 10^{-14} \text{ erg s}^{-1} \text{ cm}^{-2}$$

• We present a catalogue of reflection-dominated Compton-thick AGN candidates selected using the SRG/eROSITA survey in Lockman Hole

- We present a catalogue of reflection-dominated Compton-thick AGN candidates selected using the SRG/eROSITA survey in Lockman Hole
- Spectral characteristics of different source categories are explored

- We present a catalogue of reflection-dominated Compton-thick AGN candidates selected using the SRG/eROSITA survey in Lockman Hole
- Spectral characteristics of different source categories are explored
- Comparison with the XMM-Newton observational data is made

- We present a catalogue of reflection-dominated Compton-thick AGN candidates selected using the SRG/eROSITA survey in Lockman Hole
- Spectral characteristics of different source categories are explored
- Comparison with the XMM-Newton observational data is made
- Sky density of reflection-dominated Compton-thick AGN is estimated

