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Sunyaev-Zeldovich or SZ effect (SZE):

Appearance of a negative source (brightness decrement) on

the map of cosmic background fluctuations in the direction to
clusters of galaxies (due to its inverse Compton scattering by
electrons of the hot intergalactic gas).

Background is CMB (relic emission) but observed in radio
(millimeter-decimeter) wavelength bands.
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This effect is weak (fractions of mK or ~3x 104 T,, where
T,,=2.7255+0.0006 K is the CMB temperature) but now
well measured. And it is very important !

We extend this effect into other (radio and X- /soft gamma-
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millimeter (radio) band. \
Compton scattering leads to a Doppler
shift of photons towards higher

frequencies, for kT, ~ 5 keV:
Av/v = (kT,/myc2) 12~ 0.1.

Substituting the CMB Planck spectrum
into the Kompaneets equation we come
to more accurate formula for distortions
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A positive source on the map of
CMB fluctuations in the
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In the limit hv < kT,
AB, /B, ~ -2y

or AT/ T,, =-2 (kTo/ msc?)ty , where
7 ~10-3 is the Thomson optical
depth toward the cluster center.
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Why the SZ-effect is B

Important?
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intensity of X-ray thermal bremsstrahlung (~ Ng2 T 172).

* Amplitude (intensity) and the shape of the distortion o5
spectrum does not depend on redshift z (see clusters >
detected by BIMA at z=0.1-0.9).

* Exellent for discovering and studying most distant clusters.
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Background radiation in other spectral bands

Cosmic Radio-Background (CRB)

* |n the radio-band the spectrum is power-law (synchrotron)

TR(V) ~T. (V/V*)—2.58i0.05 K
v, =310 MIu, 7, = (30.4+2.1)K
(Fixsen et al. 2011; Dowell, Taylor 2018)

or F(v) = Fr™®, e o = 0.58 £0.05

* The origin is unknown. Only ~25% may be
attributed to radiogalaxies and other
radiosources.

* But it is isotropic like CMB
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Doppler effect is again the main process of Compton 10!

scattering. It shifts photons to higher frequencies.
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Substituting the radio background spectrum Fg(v) in the
Kompaneets equation we obtain its relative distortions:

AFR/FR=yc a(3+a)~2.08yc— | -—

It is similar to SZ distortions of the CMB spectrum but
positive. These distortions completely compensate each
other at frequency v, =810 MHz (Holder, Chluba 2021).

But there is thermal bremsstrahlung from the hot gas

which is important in this case: OF e T s
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Radiobackground (CRB) distortions in the cluster gas

CRB stimL/IIated scattering
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Radiobackground
(CRB) distortions
In the cluster gas

CRB distortions
Bremsstrahlung

CMB distortions

Chances of detecting CRB
distortions rise with increasing
temperature and decreasing
density of the gas.
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Cosmic Radio-Background (CRB)
distortions in the hot cluster gas

Wavelength {em)
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Frequency range with dominant
bremsstrahlung contribution vs the
interstellar gas temperature and
density (for close cluster (z ~ 0).

This range is narrowest at high
temperatures and large densities of
the interstellar gas.

V; Is the frequency where CRB

distortions become equal to the
bremsstrahlung contribution.

V3 Is the frequency where CMB

distortions are completely
compensated by the bremstrahlung.



Cosmic Radio-Background (CRB)
distortions In the hot cluster gas

Wavelength (cm)
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The frequency range with dominant bremsstrahlung contribution
narrows with increasing redshift z (it is narrower for the distant
clusters).

It is advantageous to observe more distant clusters !
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Real distribution of the gas

[3-model for the gas density distribution:

R2 —33/2
N. = N, (1 + _‘))

Bremsstrahlung and scattering parameters:

»? 3/2

yp(p) =0.5997 (1+ﬁ) N2 R.
0’ 1/2
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Results of computations for two different impact parameters
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Wavelength (em)

Cosmic Radio-Background SN i N O NS . NN A
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(CRB) distortions in the
hot cluster gas

-model of the gas density
distribution.

Predictions for 10 real clusters and
two impact parameters p=0 (left)
and p=0.8 R, (right).

(Fy_ch)/Fca’ %

It is advantageous to observe the
effect of scattering

1). for the hot distant clusters and

2). it is desirable - on their periphery.
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Cosmic Radio-Background
(CRB) distortions in the
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[3-model for the gas density
distribution

Dependence on impact parameter p
at different frequencies.

Only positive source at v < 700 MHz
(due to general decay of CMB).

Very unusual shape of the source at
800 MHz <v <1500 MHz

A hybrid source — a bright narrow
positive source surrounded by a dark
(negative) ring.
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Cosmic CRB distortions

In the hot cluster gas

[-model for the gas density
distribution.

Dependence on impact parameter p
at different frequencies.

Transition from the brightness
decrement to its increment occurs
through the appearance of a very
unusual (hybrid) source — a bright
narrow positive spot surrounded by a
dark (negative) ring.

SZ-source does not dissapear at
v ~217.5 Ty but also turns into such
a hybrid source.

This is because

1). scattered emission has extremely
wide spatial distribution,

2). thermal bremsstrahlung strongly
concentrates toward the center.
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Diffuse radiation

We showed that in many cases
thermal bremsstrahlung may prevent
(or make it complex) direct detection
of increment of the radio background.

Synchrotron radiation can be also a
serious obstacle for such detection:

1). The cluster may have a radio halo
connected with relativistic electrons
accelerated at shocks during cluster
mergers or collisions. About 30%
clusters have such a halo. They can
not be used.

2). Diffuse emission from an extinct
bright radiogalaxy inside the cluster

(emission from the currently active
galaxy can be still accounted).

Simple model (sphere with Constant/

density), Monte Carlo simulations.
Lr is in the 10 MHz - 100 GHz range.
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Background radiation in other spectral bands
Cosmic X-ray and soft Gamma-ray Background (CXB)

® |n the X-ray (> 3 keV) and soft gamma-ray band the spectrum was measured by HEAO-1
o 090 /4113 | (Gruber et al. 1991). Here E is in keV,
- e at B <60 g s in keV em 2 s 1 keV -1 stem 1. \

So(E)~ J 00259 (E/60)=5+

0.504 (E/60)~1%% + | at E > 60. \
0.0?88(;5’/60)‘1-05 T T T 1T T T T T T T\T T 1T T T 71

* The fit agrees well with the COMPTEL-EGRET
measurements in the 1 MeV — 100 GeV band

* Jtis formed by AGNs at z > 1 but saves its
shape at higher redshifts. It is isotropic like
CMB and CRB.

* Monte Carlo computations, code described by
Pozdnyakov et al. (1983).

* |onization structure computed (Raymond-Smith
code).
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scattered

Scattered emission
responsible for the
positive distortions of
CXB is connected
with the emission
incident on the cluster
from all sides (thus,
these distortions are
not sensitive to the
background
fluctuations).
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All negative distortions occur in the CXB emission coming to us

through the cluster (they are sensitive to CXB inhomogeneities).
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CXB distortions In the hot gas

In the classical SZ-effect (scattering of CMB) hv « kTe, therefore
the Doppler effect is working.

When scattering of X-ray and soft gamma-ray photons is
considered hv > kTe, thus both the Doppler effect and recoil effect

are important.

The broad feature in absorption is formed in the background near
500-600 keV.

Photoabsorption by highly
(but not completely)
ionized iron, nickel and
other elements is very
important producing
absorption features near
~9 and ~2 keV.

Thresholds are consist of
the steps corresponding
to various ions.
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CXB distortions in the hot gas | |- :
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Again the main obstacle for observation of the CXB scattering ™ :

is thermal bremsstrahlung from the hot gas.

Green curves — net CXB distortions relatively the incident

spectrum. D
X
Blue curves — took also into account thermal bremsstrahlung S 5 S T TP S o
from the hot gas. -
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of the gas even in the case of highest temperatures. T .. ‘S o S
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CXB distortions In the hot gas

We then considered the model with some realistic density
distribution (i.e. [3-model) and modelled observations of the

AF/F, (%)

CXB distortions with different impact parameters p \

The contribution of thermal
emission decreases with p,
but the effect itself also

decreases.
—0.4 :_ L=05%,
[ kT, =5keV
[ 7= 1.2x10°2 N
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Here the green line shows the case of p = 0.




[ KT =2 keV

Distortions In the spectrum of the
thermal emission of the hot gas

Due to finit optical depth of the cluster gas distortions similar to
those predicted for the background spectrum arise in its thermal
emission and accounted as the distortions in CXB. The amplitude of
these distortions reaches 100% and more relatively the background

spectrum. 6 prmemmmmen L B ot
(a)

ATE/TE, (%)

Top panel — distortions in the thermal emission of the cluster gas 506 b mw_mnw

relatively the bremsstrahlung spectrum itself. Rise in the amplitude
of distortions at high energies is connected with the Doppler effect

400

(inverse Compton scattering).

Bottom spectrum — distortions relatively the background spectrum
(when the theoretical spectrum of optically thin plasma is subtracted
from the measured spectrum).

200 [
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The absorption line at 8 keV is not formed in the case kTe = 2 keV, _

because the thermal spectrum quickly cuts off. e o 05

Energy (keV)



Dependence of CXB distortions on redshidt (z)

In contrast with the
classical SZ-effect
distortions in CXB
depend on z, because
the photoabsorption
lines and MeV-feature
are associated with
well-defined energies.

Spectrum of thermal
bremsstrahlung also
changes with z.

Figures correspond
different temperatures
kTe =2 and 5 keV.
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Distortions in the CXB spectrum
towards several real clusters

We consider several nearby clusters or very massive ones
with measured large SZE decrements. These are the same
clusters used for reconstructing the CRB distortions.

The dip at about 500 keV is present in all the spectra, even in
those belonging to low-massive cold clusters.

Perhaps, it may be even more promising to observe such
cold but nearby and extended clusters than the hot
supermassive ones discovered with the classical SZ-effect
(because the latter are characterized by intense thermal
emission).
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Distortions In the CXB spectrum
connected with past activity of AGN

Outburst of AGN within the cluster several hundred years
ago will leave behind diffuse radiation scattered in the hot
cluster gas which will provide positive background distortions
in CXB.

Maximum distortions arise in the soft X-ray band but depend
on the intrinsic absorption in the AGN spectrum.

Panel (a) — the AGN radiation spectrum (red dotted line) in
comparison with the background and cluster gas spectra.

Panel (b) — the distortions of the AGN (green) and
background (black curves) spectra, the scattered AGN
radiation relative to its initial spectrum (blue curve) and
relative to the initial background spectrum (red dotted line)

Panel (c) — the background distortions including the scattered
AGN radiation. The dip at ~500 keV was not affected.
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Distortions in the CXB spectrum M only R, 3 Mpo
connected with warm plasma i
(WHIM) on the periphery of clusters

It is believed (Cen, Ostriker 1999) that 2/3 of all baryons at
z<1 are contained in the Warm-Hot Intergalactic Medium
(WHIM) which is the moderately hot plasma with a
temperature ~10° K located in filaments and other similar
structures on the far periphery of galaxy clusters. This
plasma has eluded observation.

Then the mass of WHIM surrounding a cluster Mw = 4 Mg,
where Mg is the mass of its intergalactic gas. Assuming the
outer radius of the WHIM envelope Rw = 3 Mpc, we
considered how the WHIM envelope may affect the
background.

B HIM
Top panel — relative distortions in the CXB due to WHIM. 3 HIM-+WHIM (b)

Bottom panel — distortions from both the WHIM envelope i 5 e " WG
and hot intergalactic gas of the cluster. Energy (keV)




Conclusions

The distortions in the cosmic radio, X-ray and soft gamma-ray background arising in the direction of
clusters of galaxies due to Compton scattering in the hot intergalactic gas are diverse, very
interesting and quite measurable in near future.

They are at the level of fractions of percent which is similar to amplitudes of the CMB distortions in
the classical SZ-effect.

Thermal bremsstrahlung and synchrotron emission may be a serious obstacle for direct
measurement of these distortions but there are ways to minimize them.

The unusual hybrid source (bright narrow spot surrounded by a dark ring) must be observed on the
map of background fluctuations in several specific radio bands.

The broad absorption feature must arise near 500 keV in the hard X-ray - soft gamma-ray cosmic
background spectrum.



Thank you



SZ-effect
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