Credits: NASA, ESA, CSA

LST-1 Observations and MWL Study of Blazar 1ES 1218+304

Abhradeep Roy On behalf of: CTAO-LST Collaboration

CTAO

A -

-

CTAO

Credit: Ryo Imazawa

The Large-Sized Telescope-1 (LST-1)

2

The Large-Sized Telescope-1 (LST-1)

2

1ES 1218+304: Introduction

More details: TeVCat Gamma-Ray Source Summary: 1ES 1218+304

LST-1 observation details

- Observation duration: 2023-02-28 to 2023-04-12
- 64 observations (~18 hours)
- ~40% observations in moonlight condition (rejected by standard data quality cuts).

LST-1 Analysis:

- Lstchain-v0.10.11 (DL1 to DL3)
- Gammapy-1.1 (post DL3)

Source details

- High-energy peaked BL Lac (HBL) object (discovered in TeV by MAGIC on 2006-05, <u>Albert et al. 2006</u>).
- Later detected by VERITAS (<u>Acciari et al. 2009</u>).
- Variable in Very High Energies (<u>Acciari et al. 2010</u>).
- VHE spectral index ~3.0.
- Redshift, *z* = 0.182

Observed and Monte-Carlo Data

- Duration of selected observations = 2023-02-28 to 2023-04-12 (4.4 hours)
- MC and IRF: dec_2276

Applying Standard Cuts (θ^2 **distribution**)

- Duration of selected observations = 2023-02-28 to 2023-04-12 (4.4 hours)
- MC and IRF: dec_2276
- Energy-dependent gammaness cut with 0.7 efficiency.

Theta² distribution of Runs 12108:12382 with 3 wobbles and cut at 0.04, for total time 4.39 hr

*Source-independent analysis

Applying Standard Cuts (θ^2 **distribution**)

- Duration of selected observations = 2023-02-28 to 2023-04-12 (4.4 hours)
- MC and IRF: dec_2276
- Energy-dependent gammaness cut with 0.7 efficiency. Significance of >5 sigma.

Theta² distribution of Runs 12108:12382 with 3 wobbles and cut at 0.04, for total time 4.39 hr

*Source-independent analysis

The Skymap

LST-1 Light curve and Spectrum

7

Multiwavelength Data

- 10 Swift observations.
- Optical-UV data from Swift-UVOT filters.
 - Galactic reddening and extinction correction
- Swift-XRT (0.3 to 10 keV)
 - Corrected for pile-up effect.
 - Correction for neutral Hydrogen column density during modelling.
- Fermi-LAT (100 MeV to 500 GeV)
 - $\circ \quad \ \ \text{Low emission state}$
 - Kept 1ES 1215+303 free during modelling
 - Spectral index ~1.59
 - No significant variability observed in gamma-rays
 - No time-resolved SED study
 - One overall average SED

The Model:

- Leptonic one-zone Synchrotron Self-Compton (SSC) model.
- Spherical emission zone relativistically moving down the jet.
- Isotropic magnetic field inside emission region.
- Variability timescale (t_{var}) ≤ 1 day (typical) [Sato et al. 2008, Acciari et al. 2010]
 - Constrain region size

$$R \le \frac{c\delta t_{var}}{(1+z)} = 2.5 \times 10^{16} \text{cm}$$

- Log parabolic particle spectrum-
 - Probability for a particle to accelerate is a decreasing function of the energy (<u>Massaro et al. 2004</u>)

$$f(\gamma) = (\gamma/\gamma_0)^{-(s+r\log(\gamma/\gamma_0))}$$

Fixed parameters:

- Region size (R) = 2.5×10^{16} cm
- Bulk Lorentz factor (Γ) ~ Doppler boosting (δ) = 20 (typical)
- EBL absorption model: <u>Franceschini et al. 2008</u>

Summary

- Only ~4.4 hours of data got selected by the standard quality cuts.
- Detection significance > 5σ . Flux variability study was not possible.
- VHE spectral slope is comparable to previous studies (<u>Albert et al. 2006</u>, <u>Acciari et al. 2010</u>).
- Multiwavelength SED modelling is carried out including quasi-simultaneous Swift and Fermi-LAT data.
- SED model: Leptonic one-zone Synchrotron Self-Compton with particle population having log-parabolic energy distribution.
- Diffusive shock acceleration is a viable mechanism.

Future plan: MAGIC-LST1 joint observation on 2023-03-16, 18 and 21. Joint analysis can improve the results. Ongoing efforts to recover data taken in moonlight.

Summary

- Only ~4.4 hours of data got selected by the standard quality cuts.
- Detection significance > 5σ . Flux variability study was not possible.
- VHE spectral slope is comparable to previous studies (<u>Albert et al. 2006</u>, <u>Acciari et al. 2010</u>).
- Multiwavelength SED modelling is carried out including quasi-simultaneous Swift and Fermi-LAT data.
- SED model: Leptonic one-zone Synchrotron Self-Compton with particle population having log-parabolic energy distribution.
- Diffusive shock acceleration is a viable mechanism.

Future plan: MAGIC-LST1 joint observation on 2023-03-16, 18 and 21. Joint analysis can improve the results. Ongoing efforts to recover data taken in moonlight.

Observed and Monte-Carlo Data

- Duration of selected observations = 2023-02-28 to 2023-04-12 (4.4 hours)
- MC and IRF: dec_2276

Applying Standard Cuts

Applying Standard Cuts

Duration: 2023-02-28 to 2023-04-11

Number of runs (% is w.r.t. those in Sky region & zenith range):

In the requested Sky region and range of dates:	60
+ zenith in requested range:	60
+ NSB in requested range:	35 (58.3%)
+ FF and pedestal interleaved events are present:	34 (56.7%)
+ Stable pointing:	34 (56.7%)
+ dR/dI fit P-value ok:	34 (56.7%)
+ dR/dI LS periodogram ok:	33 (55.0%)
+ dR/dI index ok:	30 (50.0%)
+ dR/dI rate ok:	18 (30.0%)
+ intensity threshold ok:	18 (30.0%)

* Median of the NSB standard deviation for the sample:

1.543 p.e. :: New MC not needed

Applying Standard Cuts

• Duration of selected observations = 4.4 hours

<u>Applying Standard Cuts (θ² distribution)</u>

- Duration of selected observations = 4.4 hours
- MC and IRF: dec_2276

Applying Standard Cuts (Energy Threshold)

1ES 1218+304: Cross-check (J Otero-Santos)

LST-1 Light curve and Spectrum (Cross-Check)

10

Soft-Lag in X-ray

Soft-lag: energy dependent Synchrotron cooling. Observed here. Hard-lag: energy-dependent acceleration. Observed by Suzaku (https://arxiv.org/pdf/0804.2529)

Harder when Brighter in X-ray

