The new era of extragalactic Fast X-ray Transients

Jonathan Quirola-Vásquez Radboud University-The Netherlands, Gruber-IAU fellow

Collaborators: P. Jonker, F. E. Bauer, A. Levan, W. Brandt, M. Ravasio, J. Sanchez, D. Eappachen, J. van Dalen, J. Chacon, A. van Hoof,...

High Energy Astrophysics and Cosmology in the era of all-sky surveys

Introduction

Transients refer to astronomical phenomena with durations of fractions of a second to weeks or years

Fast Radio Bursts (FRBs)

Supernovae (SNe)

Gamma-Ray Bursts (GRBs)

Introduction

- X-ray transients are related with a huge range of astronomical objects (stars, NSs, AGNs) over a large time range.
- Time-domain astronomy is experiencing tremendous growth, particular in response to potential for multimessenger events.
- Extragalactic Fast X-ray Transients (FXT) potentially probe a unique range of astronomical events.

Possible origins: SBOs

- A shock breakout (SBO) from a corecollapse supernova.
- The X-ray SBO emission is generated from the SN explosion shock once it crosses the surface of a star (e.g., Soderberg et al. 2008; Novara et al. 2020; Alp & Larsson 2020).
- In early 2008, while following up SN2007uy, Swift/XRT captured an X-ray flash, which coincided with an electromagnetic counterpart, the Type lbc SN 2008D.

Possible origins: TDEs

- A tidal disruption event (TDE) involving a white dwarf (WD) and an intermediate-mass black hole (IMBH)
- The X-rays are produced by the tidal disruption and accretion of the compact WD in the gravitational field of the IMBH (e.g., Jonker et al. 2013; Glennie et al. 2015).

Stephan Rosswog

5

Possible origins: BNSs

- A type of X-ray transient associated with the merger of binary neutron stars (BNS) and gamma-ray bursts (GRBs).
- The X-rays are produced by a BNS, a rapidly spinning magnetar, where our line of sight is offset from the jet of a sGRB. (e.g., Dai et al.; 2018; Jonker et al. 2013; Bauer et al. 2017; Xue et al. 2019).

Possible origins: GRB

- Orphan emission related to cocoon jet breakout of massive star. LL-Long GRBs seen slightly off-axis, Xrays+opt+radio from afterglow emission, expanding viewing angle with time.
- Also, subluminous and/or frustrated jet GRBs.
- None confirmed as yet (e.g., **Bauer et al. 2017**).

Ariel 527 FXTs (Pye+McHardy83)HEAO 1 A-110 FXTs (Ambruster+Wood86)HEAO 1 A-28 FXTs (Connors+86)ROSAT141 FXTs (Vikhlinin98)Einstein18 FXTs (Gotthelf+96)

Poor localization, largely archival searches

Little/no division here between Galactic/Extragalactic Persistent/One-off

Significant contamination from flare stars some confirmed GRBs

- 22 FXTs identified by Chandra (2000-2022)
- Five FXTs appear related with galaxies (called *Local FXTs*) at <100 Mpc (L_{X,peak}≈10³⁹⁻⁴⁰ erg/s), rate ≈34.3 deg⁻² yr⁻¹ at *Chandra* depth.
- 17 FXTs are non-local events (>100 Mpc, called *Distant FXTs*). Seven of them have extended sources with z_{photo/spec} ~0.7-3.5, so L_{X,peak}≈10⁴⁴⁻⁴⁷ erg/s, rate of distant FXTs≈36.9 deg⁻² yr⁻¹ at *Chandra* depth.

DISCOVERY OF A NEW KIND OF EXPLOSIVE X-RAY TRANSIENT NEAR M86

P. G. JONKER^{1,2,3}, A. GLENNIE⁴, M. HEIDA^{1,2}, T. MACCARONE⁵, S. HODGKIN⁶, G. NELEMANS^{2,7}, J. C. A. MILLER-JONES⁸, M. A. P. TORRES¹, AND R. FENDER⁴

A new, faint population of X-ray transients

Franz E. Bauer,^{1,2,3,4}* Ezequiel Treister,^{1,4,5}* Kevin Schawinski,⁶* Steve Schulze,^{2,1} Bin Luo,^{7,8} David M. Alexander,⁹ William N. Brandt,^{10,11,12} Andrea Comastri,¹³ Francisco Forster,^{14,2} Roberto Gilli,¹³ David Alexander Kann,¹⁵ Keiichi Maeda,^{16,17} Ken'ichi Nomoto,¹⁷† Maurizio Paolillo,^{18,19,20} Piero Ranalli,²¹ Donald P. Schneider,^{10,11} Ohad Shemmer,²² Masaomi Tanaka,²³ Alexey Tolstov,¹⁷ Nozomu Tominaga,²⁴ Paolo Tozzi,²⁵ Cristian Vignali,^{26,13} Junxian Wang,²⁷ Yongquan Xue²⁷ and Guang Yang^{10,11}

A magnetar-powered X-ray transient as the aftermath of a binary neutron-star merger

Y. Q. Xue^{1,2}*, X. C. Zheng^{1,2,3}*, Y. Li⁴, W. N. Brandt^{5,6,7}, B. Zhang^{8,9,10}*, B. Luo^{11,12,13}, B. -B. Zhang^{11,12,13}, F. E. Bauer^{14,15,16}, H. Sun⁹, B. D. Lehmer¹⁷, X. -F. Wu^{2,18}, G. Yang^{5,6}, X. Kong^{1,2}, J. Y. Li^{1,2}, M. Y. Sun^{1,2}, J. -X. Wang^{1,2} & F. Vito^{14,19}

Xue et al., 2019

10

Jonker et al., 2013 Eappachen et al., 2022

Bauer et al., 2017

- If associated to M86, has peak luminosity of 6x10⁴² erg/s., potentially related to WD-IMBH TDE with M~4.6x10⁴ M_{sun}.
- However, other scenarios could be considered. An extended source found coincident with XRT 000519 was detected with a Kron magnitude of $g_s=25.40\pm0.13$.

- Called CDF-S XT1: found in near realtime (<2 days; Luo, Brandt & Bauer 2014).
- The X-ray light curve has 110 photons, shows 110 ± 50 s rise and power-law decline (~t^{-1.5}), with T₉₀ of ~5.0ks.
- Robustly associated with host galaxy $(m_{110W}=27.4, m_R=27.5)$ at $z_{photo}=2.7-2.9$ (from **HST+JWST** data) ==> $L_{peak} \sim 10^{47}$ erg/s.
- VIMOS observation taken just 80 min after the X-ray trigger.

Bauer+2017

 The best progenitor scenario for XT1 is a low-luminosity GRB, where the X-rays are associated with the shock breakout of a chocked jet, although we cannot fully rule out other channels.

- Called CDF-S XT1: light curve contains 136 photons, with the T₉₀~11.1 ks (ObsId 16453), and shows a plateau (~2 ks) followed by a power law decay (~t-²), with spectral softening.
- Xue et al (2019) explain CDF-XT2 as powered by a millisecond magnetar.
- $L_{sd} \propto L_0 (1+t/t_{sd})^{-2} => rapidly$ spinning magnetar has a spindown luminosity

 Based on the X-ray and host properties, the similarity to X-ray flash event light curves, small host offset, and high host SFR (~180 Msun/yr), a low-luminosity collapsar progenitor appears to be a good fit for CDF-S XT2.

Host galaxy properties

Quirola-Vasquez+, in prep.

 $Log(M_*)$

Wide-field X-ray Telescope (WXT)-Einstein Probe (EP) transients

- WXT-EP have detected >7500 X-ray sources.
- ~70 high S/N FXTs (hundreds of low S/N), i.e., a rate of ~90 events/yr.
- ~40% with optical/NIR and ~20% with gamma-ray counterparts.

WXT-EP transients

- Before EP mission, only one FXT (CDF-S XT1) was announced <1 week after the X-ray trigger.
- EP has improved >4 orders of magnitude between FXT detection and announcement, regarding previous missions such as Chandra and XMM-Newton.
- Measured redshifts for eight FXTs from ~0.03 to 5 (EP240315a).
- Likely, Chandra and XMM-Newton FXTs are faint/high-redshift versions of EP FXTs(?).

- No significant gamma-ray signal, and redshift of ==> $L_{X,peak} \sim 1.7 \times 10^{48} \text{ erg/s}$
- Subsequent follow-up observations of EP240414a revealed counterparts at soft X-ray (at T0 + 2 hrs), optical (at T0 + 3 hrs), and radio (at T0 + 9/30 days) wavelengths.

• The light curve of EP240414a shows three different phases:

1) Light curve shows moderate fading within the first day which we call the first peak.

2) Rebrightening between day 2 and 3 which is followed by rapid fading after 4 days in all bands, to which we refer as the second peak.

3) Modest rebrightening in i-band and flattening of the slope in the other bands at \sim 10 days.

Van Dalen+, submitted

- Spectra of EP240414a show a clear transition in the spectral shape and features as the transient evolve.
- At early epochs (0.62 days), some similarities with AT2018cow, it is extremely blue and inconsistent with GRB afterglow emission.
- Meanwhile at later epochs (during the second peak phase) the spectrum shares similarities with SN Ic-BL such as SN 1998bw and SN 1997ef.

Van Dalen+, submitted

 The interaction of both jet and SN shock waves with the stellar envelope and a dense circumstellar medium (suggested for some Fast Blue Optical Transients) explains the FXT. At late times, the spectrum evolves to a broad-lined Type Ic supernova, similarto those seen in collapsar 22 long-GRBs

EP240801a and EP240806a

Quirola-Vasquez+, GCN 37013

- EP240801a (>80 sec) was associated with a *Fermi*-GBM gamma-ray counterpart (faint), and z=1.673 ==>L_x~9.3x10⁴⁸ erg/s
- EP240806a (~150 sec) no gamma-ray counterpart, and z=2.818 ==> $L_x \sim 1.3 \times 10^{50}$ erg/s ______ Both FXTs might associated with GRBs afterglow?

Conclusions

- Several progenitors have been proposed to explain the properties of the fast X-ray transients (FXTs), from the merger of compact objects to tidal disruption events.
- Before the Einstein Probe (EP) mission, FXTs were identified even ~years after the X-ray detection, lacking the possibility of follow-up using multiwavelenght facilities.
- EP improves the alert timescale by 4-5 orders of magnitudes, regarding previous missions such as Chandra and XMM-Newton.
- Overall, the nature of FXTs is still unknown; however during the next years, thanks to the EP capabilities, we will shed light on their individual nature of FXTs.

Thanks

Cosmic rates

The cosmic volumetric rate, combined with the other properties, may imply that we have a mix of origins.