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Introduction

Transients refer to astronomical phenomena with durations of
fractions of a second to weeks or years

Fast Radio Bursts (FRBs) Supernovae (SNe) Gamma-Ray Bursts (GRBs)



Introduction

X-ray transients are related
with a huge range of
astronomical objects (stars,
NSs, AGNSs) over a large time
range.

Time-domain astronomy is
experiencing tremendous
growth, particular in response
to potential for multi-
messenger events.

Extragalactic Fast X-ray
Transients (FXT) potentially
probe a unique range of
astronomical events.
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Possible origins: SBOs

« A shock breakout (SBO) from a core-
collapse supernova.

SN 20030

« The X-ray SBO emission is generated from
the SN explosion shock once it crosses the
surface of a star (e.g., Soderberg et al.
2008; Novara et al. 2020; Alp & Larsson
2020).

« Inearly 2008, while following up SN2007uy,
Swift/XRT captured an X-ray flash, which
coincided with an electromagnetic ~ I
counterpart, the Type Ibc SN 2008D. s T IN |'|
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Possible origins: TDEs

* Atidal disruption event (TDE) involving a
white dwarf (WD) and an intermediate-mass
black hole (IMBH)

* The X-rays are produced by the tidal
disruption and accretion of the compact WD
in the gravitational field of the IMBH (e.qg.,
Jonker et al. 2013; Glennie et al. 2015).
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Possible origins: BNSs

* Atype of X-ray transient associated with the
merger of binary neutron stars (BNS) and
gamma-ray bursts (GRBs).

* The X-rays are produced by a BNS, a rapidly
spinning magnetar, where our line of sight is
offset from the jet of a sGRB. (e.g., Dai et al.;
2018; Jonker et al. 2013; Bauer et al. 2017;

Xue et al. 2019).
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Possible origins: GRB

Orphan emission related to cocoon jet breakout of

massive star. LL-Long GRBs seen slightly off-axis,
Xrays+opt+radio from afterglow emission,
expanding viewing angle with time.

« Also, subluminous and/or frustrated jet GRBs.

« None confirmed as yet (e.g., Bauer et al. 2017).
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Brief History of FXTs (pre-2000)
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Brief History of FXTs (post-2000)

22 FXTs identified by Chandra (2000-
2022)

Five FXTs appear related with galaxies
(called Local FXTs) at <100 Mpc
(Ly pea®10%# €rg/s), rate ~34.3 deg™yr-

at Chandra depth.

17 FXTs are non-local events (>100

Mpc, called Distant FXTs). Seven of
them have extended sources with
4 ~0.7-3.5,s0 L, _ =10**erg/s,

photo/spec X,peak

rate of distant FXTs~36 9 deg?yr! at
Chandra depth.
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Brief History of FXTs (post-2000)

DISCOVERY OF A NEW KIND OF EXPLOSIVE X-RAY TRANSIENT NEAR M86 - XRT 000519
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A new, faint population of X-ray transients
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aftermath of a binary neutron-star merger
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Brief History of FXTs (post-2000)
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If associated to M86, has
peak luminosity of 6x1042
erg/s., potentially related
to WD-IMBH TDE with
M~4.6x10* M .

However, other scenarios
could be considered. An
extended source found
coincident with XRT
000519 was detected
with a Kron magnitude of
0,=25.40%0.13.
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Brief History of FXTs (post-2000)

30
« Called CDF-S XT1: found in near real- 25F
time (<2 days; Luo, Brandt & Bauer 2 20F
2014). 3 15F
10
« The X-ray light curve has 110 photons, 5F
shows _ and power-law _ 12:
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. RObUSﬂy associated with host galaxy %’; gg: ............................................................................................................................
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erg/s. A J‘
« VIMOS observation taken just 80 min 2
after the X-ray trigger. . f
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Brief History of FXTs (post-2000)
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« The best progenitor scenario for XT1 is a low-luminosity GRB, where the X-rays are associated

with the shock breakout of a chocked jet, although we cannot fully rule out other channels. 1



Brief History of FXTs (post-2000)

« Called CDF-S XT1: light curve f : - g2
contains 136 photons, with the L S .
T,,~11.1 ks (Obsld 16453), and
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Brief History of FXTs (post-2000)
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« Based on the X-ray and host properties, the similarity to X-ray flash event light curves, small
host offset, and high host SFR (~180 Msun/yr), a low-luminosity collapsar progenitor

appears to be a good fit for CDF-S XT2. -



Host galaxy properties
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From 17 FXTs #CXO+XMM) host galaxies: 14
hosts are star-forming, and three galaxies are
quiescent or transitioning.

Across all redshifts, FXT hosts tend to le_pulate
the star-forming main sequence, i.e., FXT hosts
are good tracers of star formation given their host

stellar masses. 16

Quirola-Vasquez+, in prep.



Wide-field X-ray Telescope (WXT)-
Einstein Probe (EP) transients
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 WXT-EP have detected >7500 X-ray sources.
e« ~70 high S/N FXTs (hundreds of low S/N), i.e., a rate of ~90 eventsl/yr.

 ~40% with optical/NIR and ~20% with gamma-ray counterparts.
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WXT-EP transients
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Before EP mission, only one FXT (CDF-S
XT1) was announced <1 week after the
X-ray trigger.

EP has improved >4 orders of magnitude
between FXT detection and
announcement, regarding previous
missions such as Chandra and XMM-
Newton.

Measured redshifts for eight FXTs from
~0.03 to 5 (EP240315a).

Likely, Chandra and XMM-Newton FXTs
are faint/high-redshift versions of EP
FXTs(?).
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EP240414a
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* No significant gamma-ray signal, and redshift of ==> Lx peak~1.7X10* ergls
* Subsequent follow-up observations of EP240414a revealed counterparts at soft X-ray (at TO +

2 hrs), optical (at TO + 3 hrs), and radio (at TO + 9/30 days) wavelengths.
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three different phases:
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EP240414a
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i transition in the spectral shape and
0.04 features as the transient evolve.
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EP240414a
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* The interaction of both jet and SN shock waves with the stellar envelope and a dense
circumstellar medium (suggested for some Fast Blue Optical Transients) explains the FXT. At late
times, the spectrum evolves to a broad-lined Type Ic supernova, similarto those seen in collapsar 22

long-GRBs



EP240801a and EP240806a

~30 -

-~ — GRBs Kann+11

Yt '\ —e— EP240806a (z=2.818)

o e~ EP240801a (z=1.673)
} N 'N-f." L

‘EP240801a . - | EP24
At~0.1.days - | At=8:

-281

|
N
)]

|
N
B

o |

VN 0”1': (i'-hand).

|
)
o

Absolute magnitude
N
N

|
[t
(o8]

-16

_i4 )

110‘4 1073 1072 107! 10 10! 102
Rest-frame time since burst (days)

|« EP240801a (>80 sec) was associated with a Fermi-
GBM gamma-ray counterpart (faint), and z=1.673 ==
Lx~9.3x10 erg/s

R AR GIC(r 7« EP240806a (~150 sec) no gamma-ray counterpart,
ola- and z=2.818 ==> Lx~1.3x10% erg/s 3
Quirola-Vasquez+, GCN 37087 « Both FXTs might associated with GRBs afterglow%
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Conclusions

« Several progenitors have been proposed to explain the properties of the fast
X-ray transients (FXTs), from the merger of compact objects to tidal
disruption events.

« Before the Einstein Probe (EP) mission, FXTs were identified even ~years
after the X-ray detection, lacking the possibility of follow-up using
multiwavelenght facilities.

« EP improves the alert timescale by 4-5 orders of magnitudes, regarding
previous missions such as Chandra and XMM-Newton.

« Overall, the nature of FXTs is still unknown; however during the next years,

thanks to the EP capabilities, we will shed light on their individual nature of
FXTs.
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Cosmic rates

Massive stars Merger compact objects TDEs
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The cosmic volumetric rate, combined with the other properties, may imply that we
have a mix of origins. 26
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