SRG/eROSITA results in the Eastern Galactic hemisphere

> Marat Gilfanov MPA, IKI

Spektrum-Roentgen-Gamma (SRG)

Long and turbulent history

1987-2002

Ambitious mission with 5 telescope from UV to hard X-rays, including Bragg spectrometer and X-ray polarimeter. Broad cooperation: Denmark, the UK, Italy, Germany, USA, Switzerland, Israel and Turkey. Terminated in 2002 2007-2019-...

Successor of the "old SRG" Designed to detect all massive clusters of galaxies in the observable Universe

Science leader of SRG: Rashid Sunyaev

2019, July 13 La

Launch

- 2019, Oct. 22 official "arrival" at L2
- 2019, Dec. 12 start of the all-sky survey
- 2022, Feb. 26 switched to safe mode by request of MPE eROSITA team. SRG continues to operate in the interests of ART-XC telescope

halo orbit around L2 point

All-sky survey – main component of SRG science program

- initial plan: 4 years, 8 all-sky surveys
- big circle on the sky every 4 hrs rotation axis to the Sun/Earth
- shift 1 degree per day
- full sky coverage every 6 months
- average exposure ~2 ksec
- ~150 ksec in ecliptic poles
- the survey was designed to be 25 times more sensitive than previous allsky X-ray survey by ROSAT (1991)
- to Feb 26, 2022 completed 4.38 surveys

24 hours of scanning 1 degree wide stripe on the sky

All-sky survey – main component of SRG science program

- initial plan: 4 years, 8 all-sky surveys
- big circle on the sky every 4 hrs rotation axis to the Sun/Earth
- shift 1 degree per day
- full sky coverage every 6 months
- average exposure ~2 ksec
- ~150 ksec in ecliptic poles
- the survey was designed to be 25 times more sensitive than previous allsky X-ray survey by ROSAT (1991)
- to Feb 26, 2022 completed 4.38 surveys

exposure map

The North ecliptic pole region

exposure map

0.3-2.3 keV image

~700 sources per sq.degree, confusion limited

Why an all-sky survey in X-ray band may be interesting?

- an "easy" way to find clusters of galaxies and accreting supermassive black holes in the "sea" of much more numerous stars and nearby galaxies
- ♦ detailed X-ray map of the sky
- ♦ astrophysics of many types of objects
- previous all-sky X-ray survey was performed 30 years ago (ROSAT satellite)

Quasars

Declinition

Marat Gilfanov

Квазары

Declinition

optical image

Right Ascension

~10³-10⁴ src/deg² mostly stars and galaxies quasars ~ few%

X-ray image of same size

quasars dominate galaxies ~ few % contribution of stars ~10%

Massive cluster of galaxies $z = 0.76, M = 9 \cdot 10^{14} M_{\odot}$

optical image

X-ray image of same size

Right Ascension

Marat Gilfanov

Goals of SRG/eROSITA all-sky survey

Obtain record large and uniform samples of quasars and clusters of galaxies (~10⁴-10⁶ объектов)

- ♦ cosmology with clusters of galaxies and quasars
- \Rightarrow large scale structure of the Universe at z~1
- ♦ growth of supermassive black holes
- non-stationary processes in the vicinity of supermassive black holes
- ♦ astrophysics of a broad class of objects

planned 8 independent sky surveys, 4.4 surveys completed

eROSITA data rights

HEACOSS-2024, 07/10/2024

Marat Gilfanov

X-ray surveys: wide and narrow, deep and shallow

currently achieved sensitivity of eROSITA all-sky survey exceeds by **15 times** the sensitivity of the previous (and the only) all-sky X-ray survey by ROSAT observatory

Marat Gilfanov

X-ray RGB map of the sky

galactic coordinates

Churazov, Gilfanov, Sunyaev, Brunner, Merloni, Sanders

HI in the Milky Way (HI4PI)

Marat Gilfanov

X-ray RGB map of the sky

galactic coordinates

Churazov, Gilfanov, Sunyaev, Brunner, Merloni, Sanders

eROSITA bubbles

envelope Fermi bubbles

Supermassive black hole activity at the level of $L_X \sim 10^{43}$ erg/s timescale of ~2 mln years or star – formation event ~10 mln years

 $L_X \approx 10^{39} \text{ erg/s}$

 $0.2 \rightarrow 0.3 \text{ keV}$

 $M \approx 1.5$

 $E \sim 10^{56} \text{ erg}$

Total energy of eROSITA bubbles

Predehl, Sunyaev et al, Nature, 2020

Marat Gilfanov

X-ray luminosity

Temperature jump

Shock

X-ray RGB map of the sky

galactic coordinates

Churazov, Gilfanov, Sunyaev, Brunner, Merloni, Sanders

X-ray catalog and QSO/TDE science working groups

Sergey Sazonov

Rashid Sunyaev

Pavel Medvedev

Alexei Starobinsky

Alexander Mescheryakov

Sergey Bykov

Georgii Khorunzhev

Rodion Burenin

Ilfan Bikmaev

Igor Zaznobin

Students and postdocs:

Mikhali Belvedersky, Viktor Borisov, Ilkham Galiullin, Nadezhda Malysheva, Allisa Nemeshaeva, Sergey Prokhorenko, Grigorii Uskov

SRG/eROSITA source catalog

4 sky surveys Dec. 2019 – Dec. 2021

- ♦ 1.5 mln. X-ray sources (L>8)
- \Rightarrow >1 mln. AGN and QSO
- 31,500 clusters of galaxies
 with extent sign. > 4 sigma
 talk of Rashid Sunyaev
- ~5,000 sources in the hard
 X-ray band 4-9 keV

Making sence out of 1.5 million of X-ray sources

- identification
 finding optical counterpart (problem of multiple matches)
- ♦ classification star/galaxy/quasar etc
- ♦ measuring distances/redshifts

- ✓ machine learning algoritms (random forest), neural networks – SRGz system, Mescheryakov+ 2023
- ✓ more astrophysically motivated approaches Bykov+, Belvedersky+ 2022

Making sence out of 1.5 million of X-ray sources

classification

photometric redshifts

Zaznobin, Burenin et al. 2023

SRGe J170245.3+130104 QSO at z=5.5

The most distant QSO discovered by eROSITA in the blind search. It is found by SRGz and confirmed by optical spectroscopy at BTA 6m

Khorunzhev et al. 2021 SRGz: Mescheryakov et al. 2023

eROSITA AGN sample spectroscopically confirmed

- quasars at lower redshifts are less luminous (cosmic downsizing)
- ♦ population of log $L_X > 46 - 46.5$ is dominated by blazars
- ♦ SRG/eROSITA detects objects out to $z \ge 6$
- in total over 1 mln X-ray bright AGN and quasars

X-ray luminosity function of quasars

Lockman Hole region and Early Data Release of DESI spectroscopic survey

Bykov, MG, Mescheryakov, Khorunzhev+

X-ray luminosity function of quasars

Lockman Hole region and Early Data Release of DESI spectroscopic survey

~1% of eROSITA data

Redshifts:

- spectroscopic
- photometric(SRGz) + PDF(z)

Bykov, MG, Mescheryakov, Khorunzhev+

AGN in dwarf galaxies

AGN occupation fraction in MPA-JHU SDSS catalog

Marat Gilfanov

Cosmological measurements using angular distribution of quasars and clusters of galaxies

Millenium simulations

Simulations for eROSITA QSO sample using realistic accuracy of SRGz redshifts

Bykov, MG, Sunyaev, A&A, 2022

X-rays from stars: Pleiades

827 X-ray bright stars out of 1355 stars within 3 tidal radii

Khamitov, Bikmaev, MG, Sunyaev et al., 2024

Marat Gilfanov

Non-stationary and transient phenomena

- ♦ every 24 hours SRG/eROSITA scans a ~360 deg² stripe on the sky
- ♦ full sky survey in 6 months
- (quasi-) contiguous coverage at the ecliptic poles
- accessible time scales:
 30 sec ... 4 hours 6 months

Distribution of strongly variable (>10x) sources on the sky

green – neutral hydrogen in the Galaxy

- ♦ stellar flares
- ♦ variable AGN
- tidal disruptions of stars by SMBH
- ♦ gamma-ray bursts
- ♦ "hostless" transients
- ♦ X-ray binaries

every 24 hours we used to find about ~3-5 objects changing their flux by >10x as compared to the previous survey

Tidal disruption events

disruption of a normal star by tidal forces in the gravitational field of a supermassive black hole

- ♦ eROSITA detected about 70+ TDEs
- first eROSITA TDE catalog
 published
- mean rate: one event in 100,000 years per galaxy
- dichotomy between optically and X-ray bright
- associations with three IceCube neutrino events discovered

Optical and X-ray lightcurves

X-ray spectrum (SRG/eROSITA)

HEACOSS-2024, 07/10/2024

Marat Gilfanov

Thank you!

Association of TDEs with IceCube neutrinos

- 3 ZTF+WISE TDEs have spatial and temporal matches with IceCube neutrinos
- ♦ 2 of these TDEs are detected by SRG/eROSITA super-soft spectra кT~71 и 170 эВ,
- $\Leftrightarrow \quad \frac{L_{bol}}{L_{Edd}} \sim 0.5$
- found in correlating 36 neutrino events
 with 63 ZTF+WISE flares
- ♦ probability of chance coincidence $p = 1.5 \cdot 10^{-6} \div 1.9 \cdot 10^{-4}$

van Velzen, Stein, Gilfanov, ... RS, PM, et al. 2023