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Big 25-Year Survey Successes: AGNs

Contribution of AGNs to the cosmic backgrounds.
Revealed most/much of obscured SMBH growth.

Totally changed understanding of AGN evolution
and the “cosmic balance of power”.

Much better understanding of high-redshift
AGNs and their contribution to reionization.

Clarification of AGN-galaxy and AGN-LSS
connections.



Big 25-Year Survey Successes:
Galaxies, Clusters, and Transients

Cosmic evolution of X-ray binary populations.

Development of the intracluster and intragroup
medium.

Cosmological constraints from large samples of
clusters and groups.

New populations of X-ray transients.
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Utility of X-ray
SUrveys
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X-ray Emission 1s Penetrating with
Reduced Absorption Bias
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X-ray emission can penetrate and measure large column densities.
Hand (1023 cm2), chest (1024 cm™).

Absorption bias drops going to high redshift, as gain access to
increasingly penetrating rest-frame X-rays.



X-rays Have Low Dilution by Host Starlight

Optical vs. X-ray Emission from a Local AGN (NGC 3783)

-
Optical

At high redshift cannot spatially resolve AGN light from host starlight.

X-rays maximize contrast for “cleanest” samples.



X-ray Binaries, ULXs, and Hot Gas

M31 - e.qg., Pietsch et al.
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eROSITA Clusters
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The Surveys and
Their Follow-Up



Chandra COSMOS Legacy XM-M-Newt'on‘XMM;_SERVS
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0.5-2 keV flux limit (erg cm= s71)
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Have now filled much

of the Fx-() “discovery
space” in the standard
“wedding cake” design.

Very ambitious projects
or new missions would
be needed for further
large advances.

A lot more work is
needed on federated
survey analyses.



8—24 keV flux limit (erg cm=2s7)
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Ultradeep Multiwavelength Coverage (CDF-S Examples)
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Continues to improve rapidly, keeping the science exciting.




Very Wide-Field Multiwavelength Coverage
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Also, powerful wide-field spectrographs — e.g., SuMIRe PFS, 4MOST, SPHEREX.



Source Identification

COSMOS Legacy IDs - Marchesi et al. (2016) eROSITA EFEDS - Salvato et al. (2022)
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Spectroscopic Redshifts

A large enterprise and rate-limiting step for ~ 25 years.
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Many telescopes used, including
the best on Earth and in space.
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Faint X-ray source spectroscopy remains challenging - driver for ELTSs!



Photometric Redshifts

Need Many Bands Spanning Optical-NIR Range and AGN Templates
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In total, large samples generated from z ~ 0 to z ~ 3-4. Some sources at even higher redshifts.



X-ray Source Classification

X-ray luminosity, spectral shape, variability, and morphology
X-ray-to-optical/infrared flux ratio

Broad-band SED f{itting

Optical/infrared emission-line and continuum properties

Radio morphology and core surface brightness

Usually, several independent approaches
are used to cross-check classifications



Extragalactic X-ray Source Types

Active Galactic Nuclel (AGNs): z = 0-5
Galaxies:z= 0-1.5
Clusters and groups: z = 0-2

Transients: e.q., FXTs, TDEs, QPEs

AGNs are energetically and
usually numerically dominant
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In deepest surveys, AGN number
counts now reach 10,000-24,000 deg.

1.0 billion across entire sky!
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A Few Selected
AGN Science Results



Big 25-Year Survey Successes: AGNs

Contribution of AGNs to the cosmic backgrounds.
Revealed most/much of obscured SMBH growth.

Totally changed understanding of AGN evolution
and the “cosmic balance of power”.

Much better understanding of high-redshift
AGNs and their contribution to reionization.

Clarification of AGN-galaxy and AGN-LSS
connections.



Obscured SMBH Growth
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SIMBH Growth Constraints

Mass Function Build-Up

Most SMBH Growth Driven by Accretion Bt da it o = 4
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Big 25-Year Survey Successes: AGNs

Contribution of AGNs to the cosmic backgrounds.
Revealed most/much of obscured SMBH growth.

Totally changed understanding of AGN evolution
and the “cosmic balance of power”.

Much better understanding of high-redshift
AGNs and their contribution to reionization.

Clarification of AGN-galaxy and AGN-LSS
connections.



Resolved Fraction in 7 Ms CDF-S vs. Energy

Resolved XRB Fraction
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Still need better resolution of the CXRB peak and beyond



Luminous Quasar Evolution
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AGN Evolution Rev1sed.

Basic idea of
AGN “cosmic
downsizing” from
2003 seems well
established.

Some details

still under debate.

Hard X-ray results
do not greatly
alter the strong
XLF evolution
seen at lower
energies.

Key absorption vs.

reflection
constraints.
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Cosmic Balance of Power

SMBH Accretion

Press release from 1999...

Black Holes May Supply Up to Half the Universe's Energy Output

Contact:

Christopher Wanjek
wanjek @gsfc.nasa.gov
301-286-4453

September 10, 1999

Greenbelt, Md. -- Massive black holes, long-thought to produce only a mere fraction of the universe's total energy
output, may actually be the force behind half of the universe's radiation produced after the Big Bang, chipping away the
coveted power monopoly believed to be held by ordinary stars.

Details of this energy theory, based on measurements of background X-ray radiation and the gas-obscured growth of
massive black holes, are presented today by the University of Cambridge Institute of Astronomy theorist Dr. Andrew
Fabian at the X-ray Astronomy 1999 meeting in Bologna, Italy. The meeting is being chaired by Dr. Nicholas White,
head of NASA Goddard Space Flight Center's (Greenbelt, Md.) X-ray Astrophysics Branch in the Laboratory for High
Energy Astrophysics.

Stellar Fusion
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What has dominated cosmic
radiated power since the
formation of galaxies?



Cosmic Balance of Power

Photon Energy (electron volts])
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SMBHs have made 5-10% of cosmic power since the formation of galaxies, and
stars made 90-95% — see Section 5 of Brandt & Alexander (2015) for details.



Big 25-Year Survey Successes: AGNs

Contribution of AGNs to the cosmic backgrounds.
Revealed most/much of obscured SMBH growth.

Totally changed understanding of AGN evolution
and the “cosmic balance of power”.

Much better understanding of high-redshift
AGNs and their contribution to reionization.

Clarification of AGN-galaxy and AGN-LSS
connections.



log BHAR (Mo yr=1)

Stellar Mass

7240 8000 AGNs within For the general galaxy population
z= ;8 1.3 million galaxies ‘ atz=0.1-4,long-term SMBH growth
Z= L.

S5 correlates most strongly with M.
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z=0.8
-1 — =05
— z=0.1

Effect spans ~ 3 orders of magnitude

Implications for the high-redshift
decline of quasars

Also have fairly precise p(A | Mx, 2)
constraints, encoding rich information
about SMBH growth (A = Ly/M.)
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e.g. Zou et al. (2024); Yang et al. (2018)



SMBH - Bulge Relations

M, tightly related to bulge M. — but not tightly related to total M. or disk M.
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Results cover z = 0.5-3.0, reaching
into the peak era of SMBH growth.

BHAR/SFR for bulge-dominated
galaxies (~ 1/302) similar to
typical Mpn/Mpuge locally.

Evidence for true co-evolution -
since we observe apparent
lockstep growth of SMBHs and
bulges, at least at z = 0.5-3.0.

See Yang et al. (2022) for
assessment of creation vs.
maintenance.



Compactness

BHAR vs. Compactness for

Compactness is a measure of the . .
Star-Forming Galaxies

mass/size ratio of galaxies

M " (< 1 kpC) 01 $ iiggfggiﬁggﬂ@ _____ i

21 p— 2 A z=1.5-3.0 (CANDELS) “A ‘‘‘‘ :’¢
T (1 kp C) - S
EQ 2 e
At least for gas-rich, star-forming x|
galaxies, >, may also serve as a tracer ‘5 ---- o
of central-gas density on a kpc-scale. Q-44"" e.g., Ni et al. (2019, 2021);

Aird et al. (2022)

%) “survives” partial-correlation
testing vs. other factors

Compactness Examples for log M. ~ 10.3 8.0 8.5 9.0 95 10.0 105
log >1 (M o /kpc?)

Not seen for quiescent galaxies,
suggesting the role of gas density.

-

log I, = 81('1

Redshift dependence can also be

z=03-0.5 COSMOS I-band understood via gas evolution.



S&SSTAY TUNED...

for the great in-depth talks coming up!

Astron Astrophys Rev (2015) 23:1 Surveys of the Cosmic X-ray Background
DOI 10.1007/s00159-014-0081-z

REVIEW PAPER ‘W.N. Brandt* and G. Yang

Cosmic X-ray surveys of distant active galaxies arXiv:2111.01156

The demographics, physics, and ecology of growing supermassive
black holes

W.N. Brandt - D. M. Alexander
Abstract We provide a highly concise overview of what X-ray surveys and their
. multiwavelength follow-up have revealed about the nature of the cosmic X-ray back-
aerv: 1 5 O 1 . O 1 9 82 ground (CXRB) and its constituent sources. We first describe early global studies
of the CXRB, the development of imaging CXRB surveys, and the resolved CXRB
fraction. Second, we detail the sources detected in CXRB surveys describing their
identification, classification, and basic nature. Third, since active galactic nuclei
(AGNs) are the main contributors to the CXRB, we discuss some key insights about
© Springer-Verlag Berlin Heidelberg 2015 their demographics, physics, and ecology that have come from CXRB surveys. Fi-
nally, we highlight future prospects for the field.

Abstract We review results from cosmic X-ray surveys of active galactic nuclei

(AGNs) over the past & 15 years that have dramatically improved our understanding Keywords Surveys; Cosmic X-ray background; Cosmology: observations; Galax-
of growing supermassive black holes in the distant universe. First, we discuss the util- ies: active; Galaxies; Galaxies: evolution; Galaxies: clusters; Galaxies: groups;

ity of such surveys for AGN investigations and the capabilities of the missions making Retay/astronamy
these surveys, emphasizing Chandra, XMM-Newton, and NuSTAR. Second, we briefly
describe the main cosmic X-ray surveys, the essential roles of complementary multi-
wavelength data, and how AGNs are selected from these surveys. We then review key
results from these surveys on the AGN population and its evolution (“demographics”),
the physical processes operating in AGNs (“physics”), and the interactions between

AGNSs and their environments (“ecology”). We conclude by describing some signifi- D of Ast & ics, 525 Davey Lab, The Pennsylvania State University,
. racclye S cmante far aduan el A University Park, PA 16802, USA; Institute for Gravitation and the Cosmos, The Pennsylvania
cant unresolved questions and prospects for advancing the field. State University, University Park, PA 16802, USA; Department of Physics, 104 Davey Labora-

tory, The Pennsylvania State University, University Park, PA 16802, USA; e-mail: wnbrandt@
§ ; ; 5 ; ; gmail.com - Department of Physics and Astronomy, Texas A&M University, College Sta-
Keywords Surveys - Cosmology: observations - Galaxies: active - Galaxies: nuclei - tion, TX 77843-4242, USA; George P. and Cynthia Woods Mitchell Institute for Fundamental

Galaxies: Seyfert - Galaxies: quasars - Galaxies: evolution - Black hole physics Physics and. Astronomy, Texas A4 M University; College: Station, TX 77843:4242, US A7 e-mail:
J gyang206265@gmail.com



The Future:
Questions and Prospects



A Few Big Questions for X-ray Surveys

Growth and feedback of highly obscured SMBHs
through the z ~ 1-4 galaxy formation era.

SMBH growth in the first galaxies at z ~ 5-185.
Host-galaxy properties driving SMBH growth.
Drivers of X-ray binary population evolution.
ICM formation and SMBHs in protoclusters.
Distant X-ray transient populations.

Multi-messenger connections.



A Toast to Good Health!

Chandra -1999

EP- 2024

Good to build missions to last!
Just from these missions, hope for another great decade of X-ray surveys.

Aggressive projects needed to make big advances on the key questions.



Massive Archive Exploitation
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And wide-field spectrographs



Surveys with NASA X-ray Probes

Low Energy Detector Assembly

High Energy Detector Assembly (x2)
Metrology Detectors -

High Energy Mirror Assembly (x2)
3 - 80 keV

Northrop Grumman
Spacecraft

/
20-m Deployable Boom /
with thermal and solar X-ray —
suppression sock

Low Energy Mirror Assembly
0.2 - 20 keV

LEMA

(0.2- 12 keV FoV) AN

(2-50 keV, 4 sr FOV)

HEMA
 (2-30 keV, 1° FoV)

Imaging spectrometer (IFU):

Grazing-incidence X-ray mirror: TES microcalorimeter array, cryocooled

1600 cm? effective area at E=0.5 keV/ 2 eV resolution (central area 0.9 eV)
0.2-2 keV band 30'x30" field of view

15" contains 90% PSF 118x118 15" pixels

(10" HPD resolution)

See Civano talk




Surveys with International Missions
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NewAthena Surveys
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X-ray Missions Still Need Progress
in Very Wide-Field Surveys

X-ray: Ferosma/ Feprs ~ 2000

Optlca].: 'FDES/ FHST—UDF —~ ].OO

(with LSST ratio will be ~ 10)

Ground-based optical rapidly benefits from relentless growth of information technology
(wide-field detectors, large-volume data storage and transmission). And X-ray mirrors tough!
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X-ray Emission from Actlve Galactlc Nuclel

Chandra ACIS

XMM-Newton EPIC
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Typ1ca1 AGN X-ray Spectral Energy Dlstr1but1on
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Power law
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High-energy
cutoff

10
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Swift BAT

' X-ray detectoyrs prov1de broad-band spectra and var1ab111ty for all sources.

\ Primary survey bands: Chandra (0.5-8 keV), XMM- Newton (0.3-10 keV), NuSTAR (3-24 keV),
’ " Swift BAT (14-195 keV), INTEGRAL (17-60 keV), eROSITA (0.2-5 keV), ART-XC (4-30 keV)
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Using COSMOS UltraVISTA

Probe environments from field
to My, ~ 1014 M, clusters

M.. is linked with environment

Partial-correlation testing shows
M. easily beats environment

Any environmental enhancement
arises because massive galaxies
tend to live in rich environments

Must push above My, ~ 1014 Mg
with LSST DDFs and MOONS - to
connect to targeted protoclusters
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High-Redshift Demography in 1999

Constraints on high-redshift (z > 3.5) demography highly uncertain.
Hints of no decline in the X-ray quasar number density at high redshift.

AGNs plausibly dominated reionization.

No Decline of X-ray
Quasars at High Redshift? One prediction for Chandra...

Y I T [ [
® X-ray (Log L >44.5), (0,.0,)=(1.0,0.0)

m' A

X-RAY EMISSION FROM THE FIRST QUASARS 1999, Ap]

ol 4 Optical, My<-26.0, normalized (SSG95) a ZOLTAN HAIMAN
NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510; zoltan@fnal.gov
d AND
4 . ABRAHAM LOEB
- | ® Harvard-Smithsonian Center for Astrophysics 60 Garden Street, Cambridge, MA 02138; aloeb@cfa.harvard.edu
// - ?A 71:*7 Received 1999 April 26; accepted 1999 June 10; published 1999 July 16

: & ] ABSTRACT

I { -~ Vi ] It is currently unknown whether the universe was reionized by quasars or stars at z = 5. We point out that
B o i ' - quasars can be best distinguished from stellar systems by their X-ray emission. Based on a simple hierarchical

/ CDM model, we predict the number counts and X-ray fluxes of quasars at high redshifts. The model is consistent
A 3 , with available data on the luminosity function of high-redshift quasars in the optical and soft X-ray bands. The
: 1 cumulative contribution of faint, undete i i i i i
hd the X-ray background. We find that thel Chandra X-ray Observatory might detect ~10* quasars from redshifts

= @ | z= 5 perits 17" x 17’ field of view] at the Tlux threshold of ~2 X 10 '“ ergs s ' cm -. [he redshiits of these
¢ Miyaji et al. (2000) i i idemtified by follow-up infrared observations from the ground or with the Next

= Generation Space Telescope.
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Space Density and Obscured Fraction at
z ~ 3-5 for High-to-Moderate Ly AGNs

High Obscured Fraction (Vg > 1023 cm?)
of Chandra Deep Fields AGNs
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Redshift

Obscured fraction
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Buchner+15, logLx > 43.2

Vito et al. (2018)
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Redshift

Decline at low-to-moderate Ly slightly steeper than at high luminosities.

High-Ly decline has similar form to decline of massive galaxies, but not moderate-Ly decline.



1 Ms Stacking - Seeds of First SMBHs

Pushing as faint as possible to constrain first SMBH seeds with Chandra.

X-ray stacking of individually undetected galaxies (100-1400 per bin) can provide
average X-ray detections to z = 4.5-5.5, and useful upper limits at higher redshifts.

Signal appears to be mostly from high-mass X-ray binaries in massive galaxies.

Most high-redshift SMBH accretion occurs in short AGN phase — continuous low-rate
accretion contribution appears small.

AGNs unlikely to dominate cosmic reionization, but will have secondary effects.

3.5<z<4.5 All masses 4.5<2<5.5 All masses 5.5<z<6.5 All masses

Observational results
‘ X-ray det. (this work)
4|1 O Vito+16 (all galaxies)

0 Vito+16
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----- Aird+15
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