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With John A. Wheeler, we were quite fortunate introducing the concept of Black Hole (BH) and, more important, using the Kerr
mathematical solution to find the BH mass energy formula with Demetrious Christodoulou and Stephen Hawking. This topic is still far
from being concluded: the role of the irreducible mass is being scrutinized and new results are being established in the energy extraction
processes from a Kerr BH, even in these hours. We have been equally fortunate in developing the Binary Driven Hypernova model, based
on a simple CO core of 10 M_,_and a companion binary NS of 1.5 M_ _evolving, in seven Episodes, guiding the establishing of new

physical laws made possible by the multywavelength observations in newly observed extra-galactic systems. Possibly, the greatest
contribution is a novel paradigm to identify the birth of a SN and its evolution into an optical SN, the birth of a BH, the birth of a pulsar
leading to the understanding of the earliest emission of the TeV radiation, the evolution of the SN remnant through the observation X ray
afterglow. All these different processes previously uncorrelated are newly identified as originating in the time evolution of a single
BDHN: so, unifying within the evolution of a single extragalactic system, the fragmented astrophysical knowledge traditionally acquired
from observations in our own Galaxy. We extend the observations of the BDHN to the earliest phases of the Universe. We also call
attention on how the BDHN can significantly modify the paradigms of differentiating long and short GRB:s.
While all this rest on our traditional understanding of the standard model of particle physics, we are addressing the new physics
encountered in the study of our galactic center pointing to the possible existence of a yet unidentified fermionic dark matter component.
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Over 5000 references on Crab Nebula
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W heeler and Ruffini stud y su per-denae ‘black holes’
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: Prof. Remo Ruffini and Prof. Roy Kerr
at Prof. Stephen Hawking’s home in Cambridge
for dinner on June 20, 2017




Recent progress

The Black Hole Mass-Energy Formulae
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The new era: the launch of Beppo Sax on April 30, 1996
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Light curves in the 2-10 keV
band compared with
theoretical models of neutron
star cooling (Ruffini et. al.

Adv.Sp.Res, 2004)
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Figure 1. Snapshots of the SPH simulation of the HGC scenario. The initial binary sysiem is formed by a CO,.,.. the progenitor of which is an M5 4 = 25 M __and a
2 M_ NS with an initial orbital period of approximately 5 minutes (model 25MIple of Table 2). The upper pancl shows the mass on the binary equatorial
plane at different times of the simulation, while the lower pane] comesponds 1o the plane orthogonal to the binary equatonial planc. T ference system was rotated
and translated in such a way that the r-axis is along the line s the binary stars and the n of the ystem is at the NS position. At 1 = 40 s (first
frame from lefi), it can be seen that the panticles captured by the ! ave formed a kind of tail behind it, then these particles star @ circularize around the NS and a
kind of thick disk is observed o ¢ 100 = {second frame from lefi). The material captured by the gravit I ficld of the NS companion is also atiracted by the NS
and stans o be accreted by it as can be seen ot 1 = 180 s (third frame). After around one initial orbital period. at ¢ = 250 s. a kind of disk structure has been formed
around both stars. The N5 is along the x-axis at —2.02. -292, —-3.73, and —-5.64 forr = 40, 100, 180, and 250 5, respectively. Note that this figure and all snapshot

figures were done with the SNSPLASH visualization prog

Fig. 1: Becerra et Al., ApJ, 871:14 (29pp), 2019
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A (not complete) list of articles on BdHN model

Rueda et al. ApJ 2022 — Synchrotron afterglow of GRB 180720B
Wang Yu et al. ApJ 2022 — BdHN analysis of GRB 171205A
Rueda et al., PRD 2022 — GW:s from NS triaxial-biaxial transition
Becerra et al. PRD 2022 — The first minutes of BdHN evolution
Rueda, et al., ApJ 2022 — Inner engine, full GR

Ruffini, et al., MNRAS 2021 — BdHN I, statistics, GeV emission
Moradi, et al., A&A 2021 — Inner engine GRB 190114C and M87*
Rueda, et al., ApJ 2020 — X-ray afterglow, magnetic field in BdHN
Rueda & Ruffini, EPJC 2020 — Inner engine, blackholic quantum
Ruffini, et al., ApJ 2019 — Inner engine model, first estimates
Becerra, et al., ApJ 2019 — First 3D SPH simulation

Ruffini, et al., ApJ 2018 — X-ray afterglow, synchrotron newNS
Becerra, et al., ApJ 2018 — Neutrino flavour oscillations

Ruffini, et al., ApJ 2018 — e+e expansion in matter around BH
Cipolletta, et al., PRD 2017 — NS spacetime properties

Becerra, et al., ApJ 2016 — First 3D simulation

Fryer, et al., PRL 2015 — Binary stability

Becerra, et al., ApJ 2015 — First 2D simulation

Fryer, et al., APJL 2014 — First 1D simulation

Rueda & Ruffini, APJL 2012 — ldea and first estimate of IGC
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The Kerr metric describing the
rotating BH.

An asymptotically uniform
magnetic field around the Kerr
BH.
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VNSise] The seven episodes GRB 190114C

GRB 190114C, z=0.423, Eiso
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GCN Circular #32808
Y. Aimuratov, L. Bocoma, C.L. Bianco, C. Chorubini, S. Filj M. Karlica, Liang Ui, R. Moradi, F.
Rastegar Nia, J.A. Rueda, RB. Ruffini, N. Sahakyan, Y. Wang, 5.5. Xue, on behalf of the ICRANet team,

report:

nature astronomy a
GRB 221 A appears o be a rare axample (Jean-Luc Atteia et al. 2022, GCN 32733) of a parti (
energetic and close GRB (de Ugarle Posligo st al. 2022, GCN 32048 and Lesage el al. G(
32642 and N.EM. Kuin & 022, GCN 32656). Within the BAHN mooel, we have followed the X-ray,
optical, and radio afterglows originating from synchrotron emission powered by fast spinning newborm

naeutron stars (VNS) with initial perioas of fraction of a millisecond, accreting the suparnova ajecta, d : f 3 d
craated by tho collapsa of a earhon-oxygen cora (Hueda et al. 2022, arXiv:2204.00579). Figures 1, 2 JWST etealon 0 a supemova asswate
and 3 show the aftorglows of throo typo HNa, namely GRB 1807208 [Ruffini ot al. 2018, GCN ’th - h o

S R e et With GRB 221009A withoutanr-process

GCN 31058), and the prediction of their associated supemova. We have indicated the expectad time i atll

of the occurrence of the supemova in CRB 221009A (Aimuratov et al. 2022, GCN 32780). The ongoing s gn re

observations in optical, radio, and X-ray bands are strongly recommended for aliowing

delermination of the spin and megnelic of the vNS. This will probe as wsll if the optical

synchrolron emission, at ~ 1070 s from the Fermi-GBM frigger, impedes the observations of the 2

optical emission of the supernova oniginating from nickel decay (Almuratov et al. in preparation, see Received: 26 August 2023 Poter K. Blanchard®' V. Ashley Villar’, Ryan Chornock®?, Tanmoy Laskar*?,

also data from Iifan Bikmaev et al. 2022, GCN 32752, and Jia. Ren et al. 2 ¥ijia Li®*’, Jool Loja® ™, lustin Pieral®, Edo Borger’, Raffaclla Margutti @ =,
icranet.org/docs/Figl paf Fig?: nHp:/Awww.icr /docs Accepted: § Maseh 2094 Kate D Alexander®", Jennifer Barnes®, Yvette Cendes®-, Tarraneh Eftekhar!,

: ) Published enline: 12 Aprll 2024 Dardel Kasan™, Natalia LaBaron @, Brian D. Matzger 3™,
James Muzeralle Page ®° Armin Rest @°, Huai Sears® ', Danial M. Siagel @™
i Chock for upcdates &S. Karthik Yadavalii*

Article hips: jfdoiongf10.1038/s41550-024-02237-4

Identifying the sites of i-processnucleosynthesis, a primary mechanism
of heavy element production. is a key goal of astrophysics. The discovery
of the brightest gamma-ray burst (GRB) to date, GRE 221009A, presenied
anopportunity tospectroscopically test theidea that r-process elements
are produced following the collapse of rapidly rotating massive stars. Here
we present James Webb Space Telescope observations of GRE 221009A
== Gge—129:0.01 obtained +168 and <170 rest-frame daysafter the gamma-ray trigger, and
ay==1.577 £ 0.004 demonstrate that they are well described by a SN 1998bw-like supernova
Fermi-GBM Pile-up (5N) and power-law afrerglow, with no evidence for 2 component from
SN res r-process emission. The SN, withanickel mass of approximately 0.09 M, is
Sepeu s Enmiaouly fow LIASS only slightly fainter than the brightness of SN1998bwat this phase, which
':‘_""'i e indicates that the SNis not an unusual GRB-SN, This demonstrates that the
;t“"'t': o GRB and SN mechanisms are decoupled and that highly energetic GRBs
Expected peak of SN are not likely to produce significant guantities of r-process material, which
Swill-XRT (03 - 10 keV) leaves open the question of whether explosions of massive stars are key
Fermi-LAT (0.1 - 100 GeV) sources of r-process elements. Moreaver, the host galaxyof GRE 2210094
i | SR C R e UL e i i ] has avery low metallicity of approximately 0.12 7, and strong H, emission
1 (}(' ]{]l ].0: 1 ﬂl 104 3 ! at the explosion site, whichis consistent with recentstar formation, hinting
Rest-Frame Time (s) that environmental factorsare responsiblefor its extreme energetics.
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GRB 220101A

GRB 220101A
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The astrophysical components :Co core NS binary, and fission of VNS, SN rise and ejecta accretion on
VNS, leading to m___ Pulsar, accretion on NS leading to BH, accretion on SN remnant X ray afterglow



GRB 221009A
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The coincidence of the TeV emission with the early phases of m__ v NS



GRB 160625B

GRB 160625B

| (Trigger) : COcore Collapse & SN-rise
II: Fission, UNS-rise, SN Ejecta Accretion
ll: BH (overcritical) - UPE
Fermi-GBM IV: BH (undercritical) - GeV
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This source is very similar to GRB 221009A TeV could have been detected if the detectors
would have been operative
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GRB 240825A

Long GRBs
Short GRBs
GRB 240825A
GRB 220101A
GRB 090510
GRB 060614

R. Ruffini, C.L. Bianco, M. Della Valle, Liang Li, M.T.
Mirtorabi, R. Moradi, F. Rastegar Nia, J.A. Rueda, Y.
Wang, on behalf of the ICRANet team, report:

The T90 of GRB 240825A is only 4 seconds (GCN
37301), and it is located at a relatively close distance
(z=0.659, GCN 37293). The fluence reaches a high
level of 10"{-4} erg/cm”2. Through spectral analysis,
we find that peak energy Ep is about 400 keV and
isotropic energy Eiso is about 2x10™53} erqg,
consistent with the Amati relation for long-duration
gamma-ray bursts. Comparing its X-ray afterglow (see
figure attached below, blue dots), its luminosity falls
within the range of other long-duration bursts which
are associated with supernovae, higher than those of
short-duration bursts which have merge origins. Based
on these findings, we conclude that GRB 240825A is a
long-duration burst (BdHN I; see, e.g., Bianco, et al.,
2024, ApJ, 966, 219) and is associated with a SN. The
supernova may reach its optical peak in the observer's
rest-frame approximately one month after the trigger.
Its peak brightness should be within the detection
limits of both ground- and space-based telescopes.
Therefore, we encourage further observations in the
coming weeks.
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27" September analysis of GRB 240825A

GRB 2408254
GRE 2201014
GRB 211211A
GRB 090510
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Figure 4. Comparing X-ray afterghovs of GRB 24068254 with typical long GRB (GRE 2200001 A, deep green), short GRB (GRE
(PRS0, Elaee ), amed twoo long duration bat menger origin GRBs (GEB 60614A and GRB 2112114 red).




27" September analysis of GRB 240825A
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Figure 3. GeV Photons with probabilities more than 80% beonging 1o GRB 2408254 (red podnis).




27" September analysis of GRB 240825A
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Figure 1. Count light curve of Fermi-GBM NAIG, showing the number of photon received by the satellite per second.




27" September analysis of GRB 240825A

— Fermi-LaBM: Blackbody
Fermi-C:BM: Band

= Fermi-L:BM: Total

i -+ Mald

| BALT

: -+  BGO

-

-

.
L
-
 }
—_
=]
=
ol
W
T,
o }
L
=
L
it
1
]
]
=
[
=
=0
=
o

0=
FPhoton Energy - leed'




27" September analysis of GRB 240825A
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The
optical emission

of
the m__ VNS

in GRB 240825B
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The
X-Ray afterglow
emission

of
GRB240825B

Luminosity (erg/s)
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The
GeV emission

of
GRB 240825B
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The
GBM emission

of
GRB 240825B

Luminosity (erg s—1)

—4— Fermi-GBM: 1 - 1000 keV




The identified components of a BAHN | in GRB 240825BA (as of October 4, 2024)

<+ Swift-XRT: 0.3 - 10 keV
Fermi-GBM: 1 - 1000 keV
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Albert Einstein, Hideki Yukawa, John. A. Wheeler and Dr. Homi J. Bhabha
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