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My Take Aways from the Workshop.. 
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Quenched jetVacuum jet

Jet Cone 
Medium (QGP)

Elastic scattering,  
Medium induced Radiation, 

Medium Response…

Jet loses energy as a whole 
Internal structures of jets are modified 

(Jet observable A, B, C, D…)

Jet-QGP interaction What we measured
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Quenched jetVacuum jet

For what we measured..
❖ Can they fully describe the jet quenching effect? 

❖ Can we disentangle each jet-QGP interaction from the 
measurements? 

❖ When we see modifications, are they from jet quenching, or non-
quenching bias, or both? 

❖ In addition, the surface effect… Many jets experience little 
quenching, thus diminishing the significance of the results.  

For neural network trained from specific conditions.. 
❖ Can it be applied to a broader range? -physics interpretability

My Take Aways from the Workshop.. 
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Elastic scattering,  
Medium induced Radiation, 

Medium Response…

Jet loses energy as a whole 
Internal structures of jets are modified 

(Jet observable A, B, C, D…)

Jet-QGP interaction What we measured

?
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Jet Cone 
Medium (QGP)

Elastic scattering,  
Medium induced Radiation, 

Medium Response…

Jet loses energy as a whole 
Internal structures of jets are modified 

(Jet observable A, B, C, D…)

Jet-QGP interaction What we measured

?

Quenched jetVacuum jet

For what we measured..
❖ Can they fully describe the jet quenching effect? 

❖ Can we disentangle each jet-QGP interaction from the 
measurements? 

❖ When we see modifications, are they from jet quenching, or non-
quenching bias, or both? 

❖ In addition, the surface effect… Many jets experience little 
quenching, thus diminishing the significance of the results.  

For neural network trained from specific conditions.. 
❖ Can it be applied to a broader range? -physics interpretability

My presentation today: 

A trained neural network can 
identify jet quenching level on 

a jet-by-jet basis 
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Jet Quenching  Study as a Binary Classification Problem in ML
Part of the previous works 

• L. Apolinário, N.F. Castro, M. C. Romão, et al., JHEP11(2021)219 
• YLD, D. Pablos and K. Tywoniuk, JHEP03(2021)206 
• Y. S. Lai, J. Mulligan, M. Płoskoń, et al., JHEP10(2022)011 
• U.S. Qureshi, R. Kunnawalkam Elayavalli, arXiv:2411.19389 
• …
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Different representations of jets
Neural Network of Choice:  
CNN, RNN, DNN, Transformer…

Output: 
Quenching level prediction 

From 0 to 1

★ Jets are complex evolving objects that enable 
different learning algorithms to be applied. 

Input: Choose jet observables 
that signify the quenching effects 

Global jet observable 
Internal jet structures 
Jet shape 
Jet fragmentation function 
Lund planes 
Jet substructures 
Jet constituents 
…

Binary Classification & 
Supervised Learning 

Quenched jets: 1 
Unquenched jets:0
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Jet Quenching  Study as a Binary Classification Problem in ML
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Neural Network of Choice:  
Long Short-Term Memory Neural 

Network (LSTM)

Output: 
Quenching level prediction 

From 0 to 1

xt = [z, ΔR, k⊥, m, . . . ]

pT,1pT,2

  

𝑧 =
min(𝑝𝑇,1,  𝑝𝑇,2)

𝑝𝑇,1 + 𝑝𝑇,2
 

∆ 𝑅 = (𝜑1 − 𝜑2)
2 + (𝜂1 − 𝜂2)

2

𝑘⊥ = 𝑝𝑇,2 ∗ ∆ R

𝑚 = 𝑖𝑛𝑣_𝑚𝑎𝑠𝑠(𝑗1, 𝑗2)

Shared momentum ratio 

Angular separation 

Perpendicular momentum 

Invariant mass

Sequential data Jet substructures

Binary Classification & 
Supervised Learning 

Quenched jets: 1 
Unquenched jets:0

Our input to ML: Jet substructures 
❖ We reconstruct jets in to a binary tree by soft drop

❖ Define jet substructures on each splitting point

❖ Following the hardest branch, they form sequential data, as input of NN
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Neural Network of Choice:  
Long Short-Term Memory Neural 

Network (LSTM)

Output: 
Quenching level prediction 

From 0 to 1

xt = [z, ΔR, k⊥, m, . . . ]

pT,1pT,2

  

𝑧 =
min(𝑝𝑇,1,  𝑝𝑇,2)

𝑝𝑇,1 + 𝑝𝑇,2
 

∆ 𝑅 = (𝜑1 − 𝜑2)
2 + (𝜂1 − 𝜂2)

2

𝑘⊥ = 𝑝𝑇,2 ∗ ∆ R

𝑚 = 𝑖𝑛𝑣_𝑚𝑎𝑠𝑠(𝑗1, 𝑗2)

Shared momentum ratio 

Angular separation 

Perpendicular momentum 

Invariant mass

Sequential data Jet substructures

Binary Classification & 
Supervised Learning 

Quenched jets: 1 
Unquenched jets:0

❖ The binary tree structure matches to the evolving process of a jet from 
the initial parton fragmentation to final hadronization


❖ Records the history of how jet interact with the medium

Our input to ML: Jet substructures 
❖ We reconstruct jets in to a binary tree by soft drop

❖ Define jet substructures on each splitting point

❖ Following the hardest branch, they form sequential data, as input of NN
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Thermal Bkg Effects are Considered in the Study
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*Uncorr Bkg is simulated by the 
PYTHIA+ANGANTYR model

In data, we need to subtract uncorrelated background per event in heavy-ion collisions.  
To be as realistic as possible, we apply the same process in simulation.  

dijet hard event = mixed event bkg-sub event 

JEWEL simulation for dijet events:  

Non-quenched jets (vacuum class) 
Quenched jets (medium class) 

Background subtraction algorithm:  
Event-wide Constituent Subtraction 

0-10% Centrality

+ uncorrelated bkg

Embedding the simulated event 
with a uncorrelated background: 

We use the jets reconstructed from the 
bkg-subtracted events for training. 
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ML Classified Quenched Jets — Jet Substructures
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More quenchedLess quenched

𝑅𝑔

𝑝𝑇,1

𝑝𝑇,2
𝑧𝑔 =

min(𝑝𝑇,1,  𝑝𝑇,2)
𝑝𝑇,1 + 𝑝𝑇,2

 

Paper: JHEP04(2023)140

Neural network indeed learns from the jet-substructures.  
But does it “understand” the quenching features? 
we can use the LSTM output to measure all kinds of jet 
observables that are unseen in the training.

Quenchness: The LSTM output for each 
medium jet. If the value is closer to 1, then 
the jet is more quenched. And vice versa.

https://link.springer.com/article/10.1007/JHEP04(2023)140
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ML Classified Quenched Jets — Photon-Jet Imbalance
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Mostly quenched

Least quenched

Quenchness: The LSTM output for each 
medium jet. If the value is closer to 1, then 
the jet is more quenched. And vice versa.

• Jet energy loss is correlated with the ML output 
• ML is able to get the key features of jet quenching

PbPb jets 
(Jewel-Med)

w/o error bar

Physics interpretability: ML output can be applied to observables not part of the training.

More quenchedLess quenched
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ML Classified Quenched Jets — Fragmentation Function
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Jet fragmentation functions are modified to 
different levels based on their quenching levels 
by ML classification.

Mostly quenched

Least quenched

More quenchedLess quenched

PbPb jets

Physics interpretability: ML output can be applied to observables not part of the training.
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ML Classified Quenched Jets — Fragmentation Function
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Mostly quenched

Least quenched

More quenchedLess quenched

PbPb jets

Physics interpretability: ML output can be applied to observables not part of the training.

pp jets with a fake “quenching” prediction 
by the ML classifier? 



Yilun Wu   
    

Hot Jet 2024 

ML Classified Quenched Jets — Fragmentation Function
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Mostly “quenched”

Least “quenched"

pp jetsPbPb jets

Mostly quenched

Least quenched
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ML Classified Quenched Jets — Fragmentation Function
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Mostly “quenched”

Least “quenched"

pp jetsPbPb jets

Mostly quenched

Least quenched
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Detector Effects for ML Performance: ROC and Binary Classification
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GEN Level jet training

Ra
ndom Classifie

r



Yilun Wu   
    

Hot Jet 2025 

Detector Effects for ML Performance: ROC and Binary Classification
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RECO jet training  
EFlow Candidates from 

DELPHES:  
1) Combine the Tracker + 

Calorimeters 
2) Comparable to CMS 

Particle Flow Candidates

GEN Level jet training Detector effects smear the 
differences between medium 

jets and vacuum jets

Ra
ndom Classifie

r

Ra
ndom Classifie

r
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PbPb jets

Detector Effects for ML Performance: Fragmentation Function
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Mostly quenched

Least quenched

Mostly “quenched”

Least “quenched"

PbPb jets

Detector effects impact on PbPb JFF: 
• the classification of quenching level gets closure 

for whole  regionξ

GEN Level RECO SIM
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Summary
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LSTM can select jets with different quenching levels. 
✓ It predicts correlation with the jet energy loss using photon-jet sample.  
✓ It can be applied to various jet observables. 
✓ It is effective under the impact of thermal background and detector effects —doable in data!
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Backups
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Thermal Bkg(Underlying Events) Simulation
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PYTHIA+ANGANTYR

Centrality~0-10%

Multiplicity
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Neural Network and Feature Engineering
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y1y0 yL yL

yi yi

Layer 1 Layer 2

space = hp.choice('hyper_parameters',[ 
    { 
        'size_batch': hp.quniform(‘size_batch', 2000, 10000, 1000), 
        'num_epochs': hp.quniform('num_epochs', 30, 50, 5), 
        'num_layers': hp.quniform('num_layers', 2, 4, 1), 
        'Hidden_size 0': hp.quniform('hidden_size0', 8, 20, 2), 
        'hidden_size1': hp.quniform('hidden_size1', 4, 8, 2), 
        'learning_rate': hp.uniform('learning_rate', 0.01, 0.05), 
        'decay_factor': hp.uniform('decay_factor', 0.9, 0.99), 
        'loss_func' : hp.choice('loss_func', ['mse']), 
    } 
]) Fully Connected layers

Stacked LSTM layers + 2 full-connect layers. 
Output of the last step from the top LSTM layer 
is directed to two full-connect layers. 
Both the input and output dimensions of the 
first full-connect layer are the hyper-parameters 
defining the architecture of the neural network. 

Hyper parameter space

Ct-1

ht-1

Ct

ht

*Paper: JHEP04(2023)140

https://link.springer.com/article/10.1007/JHEP04(2023)140
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ML Classified Quenched Jets — Photon-Jet Imbalance
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pp jetsPbPb jets

Mostly quenched

Least quenched

Mostly “quenched”

Least “quenched"

Why in pp jets there are jet with “energy loss”?  
• Mismatch between photon and back-to back jet? 
• Uncorrelated bkg fluctuation (pile-up simulation)?  
• Does similar bias happen in PbPb when we study the 

quenching physics?

#3340 

#3334 

#3335 

#3334 

#3337

#357 

#947 

#2099 

#4375 

#11077
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ML Classified Quenched Jets — Photon-Jet Imbalance
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Mostly quenched

Least quenched

Quenchness: The LSTM output for each 
medium jet. If the value is closer to 1, then 
the jet is more quenched. And vice versa.

More quenchedLess quenched

Jet energy loss is correlated with the 
machine learning output. 

PbPb jets 
(Jewel-Med)

More quenchedLess quenched
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Correlation between Photon-Jet Imbalance and LSTM
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pp jetsPbPb jets

Correlation with  

anti-kT R = 0.4,  
Centrality 0-10% 

pγ
T > 200 GeV

pjet
T > 100 GeV

Δϕγ
jet > 7π/8

JEWEL GEN NN trained with pγ
T ∈ [200, 300] GeV

(p
γ T

−
pje

t
T

)/
pγ T

LSTM

Correlation with  

anti-kT R = 0.4,  
Centrality 0-10% 

pγ
T > 200 GeV

pjet
T > 100 GeV

Δϕγ
jet > 7π/8

JEWEL GEN NN trained with pγ
T ∈ [200, 300] GeV

(p
γ T

−
pje

t
T

)/
pγ T

LSTM
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Detector Effects for ML Performance: Fragmentation Function

25

Mostly quenched

Least quenched

Mostly “quenched”

Least “quenched"

pp jetspp jets GEN Level RECO SIM

Detector effects impact on pp JFF: 
• the classification of quenching level breaks  

closure in large  regionξ
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Detector Effects for ML Performance: Photon-Jet Imbalance
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PbPb jets pp jets

GEN level jets

RECO level jets

DELPHES:  
1) Combine the Tracker + 

Calorimeters 
2) Comparable to CMS 

Particle Flow Candidates

Work in progress:  
Detector effects change the shape 
of distributions, but the ordering 
remains



Yilun Wu   
    

Hot Jet 2025 

Jet Substructures with Showering History as NN Input
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Jet in a binary tree structure

C
/A

  A
lg

or
ith

m

pT,1pT,2

z =
min(pT,1, pT,2)

pT,1 + pT,2

1st step:  each time cluster the two closest items; 
eventually get the binary tree structure 

2nd step:  use the soft drop to discard the softer 
splitting of the two branches

𝑥𝑡 = [𝑧,  ΔR, 𝑘⊥,  𝑚,  …]

ΔR

Hardest branch of the jet

Jet substructure variables are defined at the 
splitting points of the jet. They are sensitive to 
jet-induced medium response. Thus, they are 
good tools to study the jet energy loss in 
medium

Jet—from initial parton to detected 
collimated spray of hadrons

pT,1 pT,2

Black dots: hadrons

First splitting point

Approximation to 
showering history of jets 
(from parton splitting to 

fragmentation)
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Feature Engineering in this Study
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Jet observable that represents 
the internal structure of a jet:  
• Jet substructure

Long Short-Term Memory 
Neural Network

• learning from sequential 
data 

• Improved RNN (Recurrent 
Neural Network) 

Ct-1

ht-1

Ct

ht

xt = [z, ΔR, k⊥, m, . . . ]

Output

Input

Input

xt = [z, ΔR, k⊥, m, . . . ]

pT,1pT,2

  

𝑧 =
min(𝑝𝑇,1,  𝑝𝑇,2)

𝑝𝑇,1 + 𝑝𝑇,2
 

∆ 𝑅 = (𝜑1 − 𝜑2)
2 + (𝜂1 − 𝜂2)

2

𝑘⊥ = 𝑝𝑇,2 ∗ ∆ R

𝑚 = 𝑖𝑛𝑣_𝑚𝑎𝑠𝑠(𝑗1, 𝑗2)

Shared momentum ratio 

Angular separation 

Perpendicular momentum 

Invariant mass

Sequential data Jet substructures

Image source: colah.github.io LSTM cell

http://colah.github.io

