

Funding provided through DE-SC0024660

Computation supported by ACCRE at Vanderbilt

Monte Carlo Study on the Impact of jet quenching in Pb-Pb Collision

A JEWEL-based analysis on 3 – point correlator

Junxing (Leo) Sheng [he/him], Raghav (Rithya) Kunnawalkam Elayavalli [they/them], Zhong Yang [he/him] Vanderbilt University

> HotJets 2025, UIUC January 8th, 2025

Overview

• Compare JEWEL w/ and w/o recoils for single inclusive jet events at certain fixed energy

- Investigate the QGP modification on the target jet and gain insights on how this medium effect acts on the EEEC for different dependencies
- Find potential invariance under JEWEL medium modification
- Identify the geometrical boost region corresponding to recoil effect with new coordinate system

Quick introduction to JEWEL (2.4.0) recoil effect

[Korinna Zapp and José Guilherme Milhano arXiv:2207.14814.]

Quick introduction to projected n-point energy correlator

• What is it?

—— It is defined as the product of the energies of n particles chosen within the target jet. —— Experimentally, it can be computed as weighted histogram with equation:

$$\operatorname{ENC}(R_L) = \left(\prod_{k=1}^N \int d\Omega_{\vec{n}_k}\right) \delta(R_L - \Delta \hat{R}_L) \\ \cdot \frac{1}{(E_{\text{jet}})^N} \left\langle \mathcal{E}(\vec{n}_1) \mathcal{E}(\vec{n}_2) \dots \mathcal{E}(\vec{n}_N) \right\rangle$$

[P.T. Komiske, I. Moult, J. Thaler, and H.X. Zhu arXiv: 2201.07800.]

- What makes the n-point correlator (ENCs) important?
 - ----- It is theoretically calculable in pQCD
 - —— It is scale sensitive.
 - —— It provides access to strong coupling constant α_S .
 - —— It can be used to probe the jet modification as it is sensitive to different types of energy loss.

EEEC and its dependencies

Junxing Sheng, HotJets 2025

R,

Observations:

- 1. Just like $EEC(\Delta r)$, with medium enhancement at large angle
- 2. However, the medium effect seems to have less impact compared to $EEC(\Delta r)$

Result for EEEC (R_L) PbPb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ anti_ $k_T R = 0.4$ $pp \sqrt{s_{NN}} = 5.02 \ TeV$ $|\eta_{jet}| < 2.5$ **0% < Centrality < 10%** $EEEC(R_1)$, jet $p_{\tau} \in (120, 140)GeV$ ^{0.1}E Pb-Pb r, 0-10% Pb-Pb nr, 0-10% 0.09 p-p 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 3.5 0.5 10⁻¹ **JEWEL 2.4.0**

EEEC(R)

PbPb pp

Junxing Sheng, HotJets 2025

R

Medium effect

Suppression

Observations:

- 1. The medium effect has larger enhancement compared to R_L
- 2. Suppression region shifts left.

Observations:

- 1. Medium effect has <u>even larger</u> modification on the $EEEC(R_S)$.
- 2. Suppression region shifts even more to the left.

0.07 $\phi = \arcsin \sqrt{1 - \frac{(R_L - R_M)^2}{R_s^2}}$ 0.06 0.05 0.04 0.03 0.02 0.01 q_{dq} 1.15 1.05

0.1

Result for EEEC (ϕ)

Observations:

 p_2

1. These 3 curves are statiscally indistinguishable!

This implies a **potential Invariance** under JEWEL's medium modification.

 R_M

 p_3

 p_1

PbPb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ anti_ $k_T R = 0.4$

 $\left|\eta_{jet}\right| < 2.5$ $pp \sqrt{s_{NN}} = 5.02 \text{ TeV}$

0% < Centrality < 10%

 $EEEC(\phi)$, jet $p_{\tau} \in (120, 140)GeV$

0.85

0

0.4

0.2

JEWEL 2.4.0

0.6

0.8

Q: Is this a JEWEL specific phenomenon, or this is true for other models?

1.2

1.4

Quick Introduction to coordinate system (x, y)

[H. Bossi, A.S. Kudinoor, I. Moult, D. Pablos, A. Rai, and K. Rajagopal arXiv: 2407.13818.]

Quick Introduction to coordinate system (x, y)

Junxing Sheng, HotJets 2025

Special thanks to Arjun Srinivasan Kudinoor and Dr. Zhong Yang

Quick Introduction to coordinate system (x, y)

Junxing Sheng, HotJets 2025

Special thanks to Arjun Srinivasan Kudinoor and Dr. Zhong Yang

Result for EEEC (x, y)

PbPb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ anti_ $k_T R = 0.8$ pp $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ $|\eta_{jet}| < 2.5$ 120 GeV < Jet $p_T < 140 \text{ GeV}$

Turning on recoil effect gives enhancement to the EEEC in isosceles region (including equilateral region)

Conclusion:

- 1. The medium effect contributes to different boosted and suppressed regions when looking from R_L to R_S
- 2. There exists a potential invariance $EEEC(\phi)$ under JEWEL's medium modification
- 3. The recoil effect seems to enhance the isosceles region of the triangle, while wake effect enhances mostly equilateral region:

[H. Bossi, A.S. Kudinoor, I. Moult, D. Pablos, A. Rai, and K. Rajagopal arXiv: 2407.13818.]

Next step:

- 1. Do the same analysis with different models, like Hybrid Model, for instance, to check if this invariant property is just a JEWEL phenomenon.
- 2. Check with lower $\sqrt{s} = 200 \text{ GeV}$ to see if the invariance like property still holds.
- 3. Provide possible explanation for the cancellation effect in EEEC(ϕ) with respect to different RL.
- 4. Further investigate the mechanism behind the different enhancement regions corresponding to wake and recoil effect.

Wake Effect on EEEC (x, y)

Recoil Effect on EEEC (x, y)

