Hot Jets: Advancing the Understanding of High-Temperature QCD with Jets

Search for Jet Quenching in High-Multiplicity Proton-Lead Collisions at LHC

Dener De Souza Lemos

University of Illinois at Chicago

January 10th, 2025

Measurements of jet quenching

Measurements of "jet" flow

- > Charged hadron v_2 (left)
 - In high-p_T all methods converge
- Dijet v₂ (right)
 - Good agreement with charged hadrons
 - Consistent with expectations from a path-length dependence of in-medium energy loss

Measurements of jet quenching

Collectivity in pPb

CMS PAS-HIN-23-002

High-p_T flow in pPb? (I)

- > Non-zero v_2 observed for high- p_T particles
 - Dealing with non-flow contribution is important

High-p_T flow in pPb? (II)

- > Non-zero v_2 observed for high- p_T particles
 - Dealing with non-flow contribution is important
- Similar high- $p_T v_2$ in pPb and PbPb

Jet quenching in aA?

Nuclear modification factors consistent with unity

Jet quenching constraints in pPb at LHC

$$\Rightarrow I_{pPb} = Y_{pPb} / Y_{pp}$$

1.4% Parton E-Loss at 90% C. L.

- Jet-track recoil
- Limit on out-of-cone energy transport due to jet quenching of < 400 MeV at 90% C. L

How about dijets?

UIC

The CMS detector

with Muon chambers

UIC

Datasets and Monte Carlo simulations

- pPb@8.16 TeV (L = 174.6 nb⁻¹)
 - Minimum-bias trigger
 - → ~6.4 Billion events in total
 - → Multiplicity range: 10 to 185
 - High multiplicity triggers
 - → Multiplicity range: 185 to 250
 - ~ 498 Million events in total
 - → Multiplicity range: > 250
 - ~ 32 Million events in total
 - Simulations: PYTHIA8+EPOS
 - → ~ 22 Million dijet events (all multiplicities)
 - → For corrections , unfolding and data comparison

Analysis workflow

Final results

Measurement setup

- Dijet selection
 - Particle Flow
 - → anti- k_T jets with R = 0.4
 - → $p_T^{j_1} > 100 \text{ GeV}$
 - → $p_T^{j2} > 50 \text{ GeV}$
 - \rightarrow $|\Delta \phi_{dijets}| > 5\pi/6$
- Observable
 - $\mathbf{x}_j = \frac{p_{\mathrm{T}}^{j_2}}{p_{\mathrm{T}}^{j_1}}$
- Analysis methods
 - Ratio high-to-low multiplicity (R_{CP}-like)
 - \Rightarrow Probe proton and lead directions (η dependency)
 - Apply D'Agostini unfolding to correct for resolution

through CMS

x, dependency

- Study of x_i as function of multiplicity and pseudorapidity
 - Multiplicity ranges: [10,60], [60,120], [120,185], [185,250] and [250,400]

Minimum bias trigger High multiplicity triggers

x, dependency

- Study of x_i as function of multiplicity and pseudorapidity
 - Multiplicity ranges: [10,60], [60,120], [120,185], [185,250] and [250,400]
 - Probe jets in both proton and lead directions
 - → Midrapidity: $|\eta_{CM}| < 1$
 - → Forward (p direction): $1.2 < \eta_{CM} < 2.4$
 - → Backward (Pb direction): -3.3 < η_{CM} < -1.2

x, dependency

Leading: midrapidity

Subleading: midrapidity

(Pb) -ŋ

- Study of x_i as function of multiplicity and pseudorapidity
 - Multiplicity ranges: [10,60], [60,120], [120,185], [185,250] and [250,400]

Leading: midrapidity

Subleading: forward

17

- Probe jets in both proton and lead directions
 - → Midrapidity: $|\eta_{CM}| < 1$
 - → Forward (p direction): $1.2 < \eta_{CM} < 2.4$

Leading: forward

Subleading: midrapidity

→ Backward (Pb direction): -3.3 < η_{CM} < -1.2

(Pb) -n

> n (p)

Dijet combinations studied:

> η (p)

(Pb) -n

Unfolding x_i

- First x_i unfolding at CMS
 - x_i reconstructed vs x_i generated
 - → For each η_{CM} combination
 - ➔ In different multiplicity bins
- Effects taken into account in the response matrices
 - \Rightarrow Fakes \rightarrow Negligible
 - \Rightarrow Swap \rightarrow ~20%
 - \Rightarrow Missing \rightarrow added to ROOUnfold
 - Data/MC differences
 - → p_T^{j1} vs p_T^{j2} PDF map applied to the matrices
- Applied with D'Agostini unfolding using ROOUnfold

Validate the unfolding procedure at MC (I): prior

- > Data/MC reconstructed pdf(p_T^{j1} , p_T^{j2}) is applied to remove sensitivity to prior shape
- Procedure is tested using an "oversampled MC"
 - Very different prior between the nominal and oversampled test-MC

Oversampled MC

(PYTHIA+EPOS, no invariant p_{τ} rescale)

Validate the unfolding procedure at MC (II): closures

- Closures achieved despite drastically different priors
 - Demonstrate the advantage of using the pdf-convoluted response matrices for cases when no reliable Monte Carlo exists

Unfolding x_i – example in data

Results

x, results: multiplicity dependency

- Changes observed in the shapes from low to high multiplicity ranges
 - ⇒ Especially in x_i ~ 1
 - → Same behavior for all η combinations
 - Simulations cannot be performed for the highest multiplicity range

x, results: η dependency (forward)

- Very similar behavior for all different jet combinations
 - Small changes in shapes

x, results: η dependency (backward)

- Very similar behavior for all different jet combinations
 - Small changes in shapes

CMS PAS-HIN-23-010

25

x, ratio to lower multiplicity range

- Useful for cancellation of systematics
- Ratio > 1 at low x_i and < 1 for high x_i
 - Possible effects: multijets contribution, energy-momentum conservation, among others
- > Data well described by PYTHIA8+EPOS MC in all multiplicities and η combinations
 - PYTHIA8+EPOS do not include energy loss mechanism

Average x_i : ratio high-to-low multiplicities

Summary

- Intriguing results using high multiplicity triggers (strongest flow regime)
 - Similar high-p_⊤ flow magnitude for pPb and PbPb
 - \Rightarrow No modifications observed in x_i for any configuration of jet-jet geometry
 - → Well described by PYTHIA8+EPOS (no energy loss)

CMS Experiment at the LHC, CERN

Data recorded: 2010-Nov-08 10:22:07.828203 GMT(11:22:07 CEST) Run / Event: 150431 / 541464

The work of the UIC HENP group is supported by the DOE-NP grant

(c) CERN 2009. All rights reserved.

CMS Experiment at the LHC, CERN

Data recorded: 2010-Nov-08 10:22:07.828203 GMT(11:22:07 CEST) Run / Event: 150431 / 541464

-

Nuclear PDF's

- Nuclear effects
 - Shadowing, antishadowing, EMC
- > Dijets can be employed to
 - $\Rightarrow \quad \mathsf{Map:}\,(\mathsf{x},\mathsf{Q}) \leftrightarrow (\mathsf{\eta}_{\mathsf{dijet}},\mathsf{p}_{\mathsf{T}}^{\mathsf{ave}})$
 - Constraints of gluon nPDFs

Sources of systematic uncertainties

- Sources of systematics accounted here
 - Trigger bias: comparison of distributions between MB and HM triggers
 - Pileup removal: different PU rejection event selection criteria are used as systematics
 - \Rightarrow **JES**: shift jet p_T in data based on the uncertainties of jet energy corrections
 - JER: jet p_T is smeared in MC to account for the uncertainties in data-to-simulation differences.
 - Underlying events: a jet-area-based background subtraction method is applied As an alternative to the constituent subtraction method
 - Unfolding: Five iterations were used to perform the unfolding. Four and six iterations are used as the systematic uncertainty.
- > JER and JES are dominant sources of systematics

Average x_i : ratio high-to-low multiplicities

- Similar behavior between reconstructed and unfolded
- Ratio decrease with multiplicity \succ
- **Overall good data/mc agreement** \succ

x_i ratio to lower multiplicity range (I)

- Useful for cancellation of systematics
- > Ratio > 1 at low x_i and < 1 for high x_i
 - Possible effects: multijets contribution, energy-momentum conservation, among others
- > Data well described by PYTHIA8+EPOS MC in all multiplicities and η combinations
 - PYTHIA8+EPOS does not include energy loss mechanism

x_i ratio to lower multiplicity range (II)

x, ratio to lower multiplicity range (III)

CMS Run I search for quenching

