Hot Jets 2025 Loomis Lab (UIUC), January 8-10

Machine Learning biases in background subtraction to measure jet quenching

David Stewart

Motivation: Measure Jet Quenching in QGP

- QGP: hot dense QCD colored medium
 - Generated in ultra-relativistic heavy ions collisions
- Rare, high-pT ("hard") scatterings form early in collisions
 - Traverse the QGP
 - Undergo interactions with the QGP (i.e. "quenching"
- Jets are experimental proxy of QGP:

=> Act like QGP femtoscopy of the QGP via gluon emission and scattering: "jet quenching"

Jets – algorithmic clustering

- anti- $k_{\rm T}$ algorithm
 - M. Cacciari and G. Salam (2008)
 - Infrared and collinear safe
 - Fast
- Also: add extra "ghost" (negligible $p_{\rm T}$) particles & count to measure jet area
- Result in area-based (AB) method to measure background:
 - → Use $k_{\rm T}$ algorithm to find median $p_{\rm T}$ density in jets ($\rho_{\rm bkg}$)
 - →Correct anti- $k_{\rm T}$ jets as $p_{\rm T}^{\rm corr} \equiv p_{\rm T}^{\rm jet} - \rho_{\rm bkg} A_{\rm jet}$

2 jets in an expanding QGP

J. Putschke (WSU) JETSCAPE/XSCAPE

This presentation: JETSCAPE Simulations

- Hydrodynamically flowing QGP
 - Au + Au
 - $\sqrt{s_{\rm NN}} = 200 \, {\rm GeV}$
- Simulates jet evolution with quenching in QGP
- Provides kinematics of:
 - IP: Initiating Partons (hard scattered)
 - Particles from IP (make "truth" jets)
 - Particles from QGP (background)

Anti-kT clustered jet nearest IP ("truth jet")

- Truth jet (R=0.4) from leading IP captures about 2/3's of IP's $p_{\rm T}$; $p_{\rm T,jet}^{\rm truth} \approx 0.64 p_{\rm T}^{\rm IP}$
- Truth jet (R=0.4) from leading IP captures FastJet adds "ghost" particles (negligible $p_{\rm T}$)
 - Count ghost particles determines the jet area

Result: Area-Based ("AB") Method for $p_{\rm T}$ correction

Residual error $(\delta p_{T,jet})$ dominated primarily by local ρ_{bkg} fluctuations Pros:

- Fluctuations of $\rho_{\rm bkg}$ directly measured with lots of data
- Independent of jet substructure

Cons:

Limited precision

e.g., for R = 0.4 jets in 200 GeV Au+Au collisions: $\langle \delta p_{\rm T,jet} \rangle \sim 8 \, {\rm GeV}/c$

Can we do better?

There are very good Monte Carlo simulators for vacuum jets:

- 40+ years of development using pQCD calculations and finetuned models for fragmentation and hadronization
- ⇒ In vacuum, we have very good models of truth jet substructure
- ⇒ Embed into background, and measure reco jet substructure
- ⇒ Train machine learning (ML) to find truth jet $p_{T,jet}^{true}$

Reco Jet

$$\delta p_{\mathrm{T,jet}} \equiv \mathbf{p}_{\mathrm{T,jet}}^{\mathrm{corr}} - p_{\mathrm{T,jet}}^{\mathrm{truth}}$$

Studies show this works for vacuum jets!

Improvements in $\delta p_{\mathrm{T,jet}}$ are more significant at larger jet R

- If we understand the fragmentation (and particularly in this study the multiplicity)
- ⇒ We get significant decrease in $\delta p_{\rm T,jet}$ at all jet resolution parameters
- ⇒ Gains become more important at larger jet R

Put another way, this is OK:

But what about this?

Results: ALICE, Pb+Pb @ 5.02 TeV: Quantified uncertainty and published

This study: $\delta p_{\mathrm{T,jet}}$ evolution and bias (at RHIC kinematics)

JETSCAPE:

- Uses a virtuality dependent quenching mechanism
- Calibrated hydrodynamic QGP evaluation
- Quenching parameters fixed via Bayesian analysis
- Medium response not currently included (i.e. jet is quenched by medium, but medium isn't influence by jet)

D. Everett et al. (JETSCAPE), Phys. Rev. C 103, 054904 (2021), arXiv:2011.01430 [hep-ph] A. Kumar et al. (JETSCAPE), Phys. Rev. C 107, 034911 (2023), arXiv:2204.01163 [hep-ph]

Evolution of quenching and result on ML bias

Want to see progression of effects: no quenching \rightarrow expected quenching \rightarrow beyond expected quenching

 Path not taken (computationally expensive)

Run many hydro events while incrementing the jet interaction strength parameter \hat{q}

 Path actually taken (computationally "cheap"):

> Quench jets in constant length "bricks" of QGP Observe effects at incrementing brick lengths Find brick length which approximates the quenching in hydro

Expensive Simulations: Hydro

Background from hydro evolved QGP

"hydro" jets -- jets quenched in the evolving QGP

200 GeV Au+Au Collisions

"Cheaply" Simulated Jets

"brick jets": Jets quenched in constant length bricks of QGP

Also "cheap"

"pp jets": vacuum (not quenched) jets

What quenching looks like:

 Quenching induces gluon emission (essentially "gluon bremsstrahlung")

 \rightarrow makes more low- $p_{\rm T}$ constituents

- Inspect number of constituents in truth jet for:
 - pp jets
 - Jets quenched in QGP bricks
 - Jets quenched in QGP hydro

(In this metric) 3.5 fm QGP brick approximates the hydro quenching

Note: z defined as constituent $p_{\rm T}$ ratio to the jet initiating parton, rather than the jet $p_{\rm T}$

Trained 5 Neural Networks

Data: pp jets embedded in hydro background

Inputs

Details

Paper: <u>https://arxiv.org/abs/2412.15440</u> Code: <u>https://github.com/david-stewart/jet_and_thermal</u> Parameters per neural network:

- NN_{AB}: none (used to compare to AB method)
- NN_{Ang}: Angularity: $\sum_{i=1}^{N} p_{T,i} \Delta R_i$ (where ΔR is η - ϕ distance from constituent to jet axis)
- NN_{Ncons}: Number of constituents (*N*)
- $\mathrm{NN}_{\mathrm{pTcons}}$: p_{T} of highest 10 p_{T} constituents
- NN_{AllReco}: All the parameters above together

Kinematic cuts:

- At mid-rapidity (matches RHIC experiments)
- Only jet matched to high- p_{T} IP per event

NN on pp jets embedded in hydro background:

Machine learning finds strong discriminatory power from constituent $p_{\rm T}$ (particularly 2nd highest one)

-> refer to R. Haake and C. Loizides (2019), arXiv:1810.06324 [nucl-ex]

TRAINING: NN_{AllReco} on pp jets embedded in hydro background:

- Both the AB method and NN "know" : low $p_{T,jet}^{reco}$ jets are not from " $p_{T,jet}^{truth} < 0 \text{ GeV}/c$ jets" on upward background fluctuations
- Only NN "knows" that high $p_{T,jet}^{reco}$ jets do not result from " $p_{T,jet}^{truth} > 60 \text{ GeV}/c$ jets". (Warning: ML will always exploit boundary conditions if it can!)

NN_{AllReco} on pp jets embedded in hydro background:

Neural Networks (NN) training note:

 Must use a uniform p^{truth}_{T,jet} distribution for training; otherwise, ML will simply exploit the steeply falling spectrum and always guess upward fluctuations

- Both the AB method and NN "know" : low $p_{T,jet}^{reco}$ jets are not from " $p_{T,jet}^{truth} < 0 \text{ GeV}/c$ jets" on upward background fluctuations
- Only NN "knows" that high $p_{T,jet}^{reco}$ jets do not result from " $p_{T,jet}^{truth} > 60 \text{ GeV}/c$ jets". (Warning: ML will always exploit boundary conditions if it can!)

Evolution of $\delta p_{\rm T}$ for NN_{AllReco} with incremental quenching:

- The average value (the background pedestal) is biased (≠ 0)
 - We are not measuring background
- The NN correction values of $p_{T,jet}^{corr}$ systematically under-predicts the truth values with increasing quenching
- Biggest change w.r.t. first
 2 fm of quenching

Values here for jets from events generated with $\hat{p}_{T} \in [30,31] \text{ GeV}/c$

Summary of evolution of $\langle \delta p_{\text{T,jet}} \rangle$ and $\sigma(\delta p_{\text{T,jet}})$ w.r.t. quenching

- $\langle \delta p_{\rm T,jet} \rangle$ and $\sigma \big(\delta p_{\rm T,jet} \big)$ plotted for jets at a range of $p_{\rm T}$
- Values for hydro quenched jets (horizontal lines) are again consistent with those of ~3.5 fm brick quenched jets
- Values are both $p_{\rm T}$ and quenching dependent, but (except for high- $p_{\rm T}$ $\langle \delta p_{\rm T,jet} \rangle$) monotonic w.r.t. quenching

Values here for jets from events generated with $\hat{p}_{\rm T} \in [30,31]~{\rm GeV}/c$

Perform an R_{AA} "measurement" with each NN:

- Generate a full spectrum of jets quenched in 3.5 fm of QGP: $p_{\rm T,jet}^{\rm quenched}$
- Embed $p_{T,jet}^{truth}$ into hydro backgrounds and cluster: $p_{T,jet}^{reco}$
- Use same steps as an experimental analysis to "measure" $p_{\rm T,jet}^{\rm quenched}$ from $p_{\rm T,jet}^{\rm reco}$ (and $\rho_{\rm bkg}$)
- Compare the measured R_{AA} to the actual R_{AA}
- Results indicate how biases in $\delta p_{\rm T,jet}$ propagate

Our simulated analysis:

There are three points where

sensitive to jet fragmentation:

the ML-based procedure is

Perform leading jet R_{AA} "calculation":

Make response matrix:

- Embed *pp* jets into measured (hydro) background
- Cluster and find $p_{\mathrm{T.iet}}^{\mathrm{reco}}$ and ٠ matched to the embedded *p*^{truth}_{T,jet}

CTrain NN: *pp* jets

embedded in

"measured" (hydro)

pp jets

Perform leading jet R_{AA} "calculation":

Results for $R_{AA}^{LeadJet}$ using all NN's (as well as AB method)

- The AB method is accurate (use the method for both background correction and construction of $\mathcal{M}(p_{\mathrm{T,jet}}^{\mathrm{truth}}, p_{\mathrm{T,jet}}^{\mathrm{reco}})|_{\mathrm{pp}}$)
- NN_{AB} uses only $\rho_{\rm bkg}$, $A_{\rm jet}$, and $p_{\rm T,jet}^{\rm reco}$ is equally accurate as AB method
- All other NNs generate significant bias in $R_{AA}^{LeadJet}$

ML: Where to go from here? – Using jet substructure

If we wish to use jet substructure to correct for background in quenched jets, we must use either/or:

- a) Know that we have different substructure scenarios which bound the effects on the results (How to report most probably results?)
- b) For each substructure observable used, be able to generate representative data for ML training:
 - This would probably mean already knowing the quenching present to match/qualify the training data
 - Could be a virtuous research cycle but is not a trivial problem

ML: Where to go from here? – Using jet background

We have quite a lot of jet background data (min bias) events, so that we can train ML to recognize "background" (or "fake") jets to distinguish from those with real jet constituents

- Quite a lot of interesting work in ML for detecting/classifying [−] anomalies → might be mostly independent of jet substructure.
- Might find a p_T cutoff at which we can declare an actual jet "fully quenched"/indistinguishable from background.

 If a good, robust, "fake jet" classifier can be trained, it may dramatically decrease the fake to real jet ratio at low p_{T,jet} and therefore allow measurements at lower p_{T,jet} - 60

- 50

40 [GeV/c]

05 -^{T, jet} |

- 20

+ 10

Special thanks to Hannah Bossi, Chun Shen, Raymond James, and Helen Caines for conversation, expertise, insight, and help

Extra Slides

FIG. A.2. Distribution of $p_{T,jet}^{truth}$ per JETSCAPE \hat{p}_T parameter selection for the non-quenched datasets.

FIG. 2. Distribution of the numbers of background particles per event.

FIG. A.1. Distributions of ϕ , η , and $p_{\rm T}$ densities of background particles, averaged over all background events. The v^2 flow shown is a result of JETSCAPE aligning all impact parameters along the *x*-axis.

Simulations cuts: Use only matched jet to leading parton

- a. Highest- p_{T} IP: $|\eta| \leq 1$
- b. Highest $p_{\rm T}$ jet from truth constituents within $\Delta R \leq 0.4$ from IP is "truth jet"
- c. Highest $p_{\rm T}$ jet from truth+bkg constituents within $\Delta R \leq 0.3$ of truth jet is "reco jet"

Paper: <u>https://arxiv.org/abs/2412.15440</u> Code: <u>https://github.com/david-stewart/jet_and_thermal</u>)

JETSCAPE simulation

IP with resulting hadrons

- Highest $p_{\rm T}$ ("leading") parton at $p_{\rm T}^{\rm IP} = 22~{\rm GeV}/c$
- Resulting hadrons from initial scattering

How could $\delta p_{T,jet}$ biases propagate in actual measurement?

- Embed the quenched spectra in hydro background, cluster, and background correct (using NN's) to p^{reco}_{T,jet}
- Embed a pp spectra into hydro background, cluster, and background correct (using NN's) to p^{reco}_{T,jet}
 - Use the collection of $\{p_{T,jet}^{truth}, p_{T,jet}^{reco}\}\$ to generate a response matrix $\mathcal{M}(p_{T,jet}^{truth}, p_{T,jet}^{reco})|_{pp}$ (in experiment to correct for detector efficiency)
 - Save unmatched $p_{\rm T,jet}^{\rm truth}$ as misses and unmatched $p_{\rm T,jet}^{\rm reco}$ as fakes

39

10

5

0

-10

יואסטן

Background Particles Only: anti- $k_{\rm T}$ clustering finds many "fake" jets

Background Jets: ρ =98.77 GeV/c

20

60

50

0 0 Jet *p*_T [GeV/c]

41

10

5

0

-10

יואסטן

Background Particles Only: anti- $k_{\rm T}$ clustering finds many "fake" jets

Background Jets: ρ =98.77 GeV/c

- 10

20

60

50

0 0 Jet *p*_T [GeV/c]

JETSCAPE simulation

 $\rho_{\rm bkg}$ from $k_{\rm T}$ jets: median ($p_{\rm T}^{\rm jet}/A_{\rm J}$ jet) (cluster all particles, exclude 2 highest values)

 $k_{\rm T}$: Background+Jet ρ =98.77 GeV/c

ρ=83.04 GeV/*c*

-15

-10[°]

15

10

5

0

FIG. 4. The probability distribution of the residual error, $\delta p_{\mathrm{T,jet}} \equiv p_{\mathrm{T,jet}}^{\mathrm{corr}} - p_{\mathrm{T,jet}}^{\mathrm{truth}}$, with $p_{\mathrm{T,jet}}^{\mathrm{corr}}$ from NN_{AllReco} for events with three ranges of $p_{\mathrm{T,jet}}^{\mathrm{truth}}$. Also listed are the mean and standard deviation of $\delta p_{\mathrm{T,jet}}$ for each range.

T. Sakaguchi, Overview of latest results from PHENIX. HardProbes2018. **PoS:**, 035 (2019).

FIG. 19. (Color online) Fully corrected distributions of $Y\left(p_{T,jet}^{ch}\right)$ (upper panels) and its ratio I_{CP} (lower panels) for central and peripheral Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV, for anti- k_T jets with R = 0.2, 0.3, 0.4 and 0.5. The upper panels also show $Y\left(p_{T,jet}^{ch}\right)$ for p+p collisions at $\sqrt{s} = 200$ GeV, calculated using PYTHIA at the charged-particle level and NLO pQCD transformed to the charged-particle level (Sect. X). The uncertainty of the NLO calculation is not shown.

10.1103/PhysRevC.96.024905