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Motivation: Measure Jet Quenching in QGP

• QGP: hot dense QCD colored medium
• Generated in ultra-relativistic heavy ions 

collisions

• Rare, high-pT (“hard”) scatterings form 
early in collisions
• Traverse the QGP

• Undergo interactions with the QGP (i.e. 
“quenching”

• Jets are experimental proxy of QGP:
=> Act like QGP femtoscopy of the QGP via gluon 
emission and scattering: “jet quenching”
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Inclusive 𝑅AA
jet

 in central Au+Au at RHIC? – TBD…



h
tt

p
s:

//
w

w
w

.s
ta

r.
b

n
l.

go
v/

p
u

b
lic

/c
o

m
p

/v
is

/O
n

Li
n

e
Ev

en
tD

is
p

la
y/

A
u

A
u

2
0

0A
n

im
a

te
d

.g
if

STAR

3

Au+Au 
200 GeV

Post Hadronization – Get Something Like This:Background in A+A is 
very messy



Jets – algorithmic clustering

• anti-𝑘T algorithm 
• M. Cacciari and G. Salam (2008)
• Infrared and collinear safe
• Fast

• Also: add extra “ghost” 
(negligible 𝑝T) particles & count to 
measure jet area

➔Result in area-based (AB) method 
to measure background:
➔ Use 𝑘T algorithm to find median 𝑝T 

density in jets (𝜌bkg)

➔Correct anti-𝑘T jets as
 𝑝T

corr ≡ 𝑝T
jet

− 𝜌bkg𝐴jet

4
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2 jets in an expanding QGP



This presentation: JETSCAPE Simulations

• Hydrodynamically flowing QGP
• Au + Au

• 𝑠NN = 200 GeV

• Simulates jet evolution with quenching in 
QGP

• Provides kinematics of:

• IP: Initiating Partons (hard scattered)

• Particles from IP (make “truth” jets)

• Particles from QGP (background)
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Evolving Jet



Anti-kT clustered jet nearest IP (“truth jet”)

• Truth jet (R=0.4) from leading IP captures 
about 2/3’s of IP’s 𝑝T; 𝑝T,jet

truth ≈ 0.64 𝑝T
IP

7

• FastJet adds “ghost” particles (negligible 𝑝T)

• Count ghost particles determines the jet area

(second, recoiling 
IP about here)

(Particle markers 
size scaled by 𝑝T)]

Illustration JETSCAPE simulation Simulation Event Example



anti-𝑘T clustering with background

8

ExampleJETSCAPE simulation Simulation Event Example



Result: Area-Based (“AB”) Method for 𝑝T correction
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𝑝T,jet
reco 𝑝T,jet

corr

Reco Jet Truth Jet

−𝐴jet𝜌bkg

𝛿𝑝T,jet ≡ 𝑝T,jet
corr − 𝑝T,jet

truth

i. e. :  𝛿𝑝T,jet ≡ 𝑝T,jet
reco − 𝜌bkgAjet − 𝑝T,jet

truth

Residual error 𝛿𝑝T,jet  
dominated primarily by local 
𝜌bkg fluctuations

Pros:

• Fluctuations of 𝜌bkg directly 
measured with lots of data

• Independent of jet substructure

Cons:

• Limited precision

e.g., for 𝑅 = 0.4 jets in 200 GeV 
Au+Au collisions:

𝛿𝑝T,jet ∼ 8 GeV/𝑐

remove pedestal

metric for background correction



Can we do better?
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𝛿𝑝T,jet ≡ 𝒑𝐓,𝐣𝐞𝐭
𝐜𝐨𝐫𝐫 − 𝑝T,jet

truth

There are very good Monte Carlo 
simulators for vacuum jets:

• 40+ years of development using 
pQCD calculations and fine-
tuned models for fragmentation 
and hadronization

⇒ In vacuum, we have very good 
models of truth jet substructure

⇒ Embed into background, and 
measure reco jet substructure

⇒ Train machine learning (ML) to 
find truth jet 𝑝T,jet

true

Reco Jet

𝒑𝐓,𝐣𝐞𝐭
𝐜𝐨𝐫𝐫

Jet 
Substructure 
Observables

Machine 
Learning

𝜌bkg



Studies show this works for vacuum jets!
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R. Haake and C. Loizides (2019), arXiv:1810.06324 [nucl-ex]

𝛿𝑝T,jet =



Improvements in 𝛿𝑝T,jet are more significant at larger jet R

12

U
n
iv

e
rs

it
y
 o

f 
T

e
n
n
es

se
e,

 a
rX

iv
:2

4
0
2
.1

0
9
4
5
v

1
, 
8
 F

e
b
 2

0
2
4

Increasing R
• If we understand the 

fragmentation (and particularly 
in this study the multiplicity)

⇒ We get significant decrease in 
𝛿𝑝T,jet at all jet resolution 
parameters 

⇒ Gains become more important 
at larger jet R

𝜎
𝛿

𝑝
T

 [
G

eV
]

𝜎
𝛿

𝑝
T

 [
G

eV
]

𝑝T,jet [GeV] 𝑝T,jet [GeV] 𝑝T,jet [GeV]



Put another way, this is OK:
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Machine 
Learning

Machine Learning is trained on vacuum jets …

Vacuum Jet
+

Heavy Ion 
Background

Vacuum 𝑝T,jet
truth

Machine 
Learning

… ML results: smaller 𝛿𝑝T,jet distributions

Vacuum Jet
+

Heavy Ion 
Background

Vacuum 𝑝T,jet
corr



But what about this?
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Machine 
Learning

Machine Learning is trained on vacuum jets …

Vacuum Jet
+

Heavy Ion 
Background

Vacuum 𝑝T,jet
truth

Machine 
Learning

→ how is 𝛿𝑝T biased from quenching?

Quenched Jet
In

Heavy Ion 
Background

Quenched 𝑝T,jet
corr



Results: ALICE, Pb+Pb @ 5.02 TeV:
Quantified uncertainty and published

15

Current results

(from reference): There are three points where the 

ML-based procedure is sensitive to jet fragmentation: 

• measured input spectra

• the response matrix

• and the training

Phys. Lett. B 849, 138412 (2024), arXiv:2303.00592 [nucl-ex]

Increasing R

PYTHIA8 pp

Quark 
Only

Quantify uncertainty from substructure



This study: 𝛿𝑝T,jet evolution and bias (at RHIC kinematics)
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JETSCAPE:

• Uses a virtuality dependent quenching mechanism

• Calibrated hydrodynamic QGP evaluation

• Quenching parameters fixed via Bayesian analysis

• Medium response not currently included (i.e. jet is 

quenched by medium, but medium isn’t influence by 

jet)

This Study

JETSCAPE pp

JETSCAPE 
Quenched 

Jets

D. Everett et al. (JETSCAPE), Phys. Rev. C 103, 054904 (2021), arXiv:2011.01430 [hep-ph]

A. Kumar et al. (JETSCAPE), Phys. Rev. C 107, 034911 (2023), arXiv:2204.01163 [hep-ph]



Evolution of quenching and result on ML bias 
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This Study

Background from 
hydro evolved QGP

“hydro” jets -- jets 
quenched in the 

evolving QGP

Expensive Simulations: Hydro

200 GeV Au+Au Collisions

Want to see progression of effects: 
no quenching → expected quenching → 
beyond expected quenching

• Path not taken
(computationally expensive)

Run many hydro events while incrementing the 
jet interaction strength parameter ො𝑞

• Path actually taken 
(computationally “cheap”):

Quench jets in constant length “bricks” of QGP

Observe effects at incrementing brick lengths

Find brick length which approximates the 
quenching in hydro

“Cheaply” Simulated Jets

“brick jets”: Jets quenched in 
constant length bricks of QGP

“pp jets”: vacuum 
(not quenched) jets

Also “cheap”



What quenching looks like:

• Quenching induces gluon emission 
(essentially “gluon 
bremsstrahlung”) 

→ makes more low-𝑝T constituents

• Inspect number of constituents in 
truth jet for:
• pp jets

• Jets quenched in QGP bricks

• Jets quenched in QGP hydro

(In this metric) 3.5 fm QGP brick 
approximates the hydro quenching

18

Note: z defined as constituent 𝑝T ratio to the 
jet initiating parton, rather than the jet 𝑝T



Trained 5 Neural Networks Parameters per neural network:

• NNAB: none (used to compare to AB method)

• NNAng: Angularity: σ𝑖=1
𝑁 𝑝T,𝑖Δ𝑅𝑖  

(where Δ𝑅 is 𝜂-𝜙 distance from constituent to jet axis)

• NNNcons: Number of constituents (𝑁)

• NNpTcons: 𝑝T of highest 10 𝑝T constituents

• NNAllReco: All the parameters above together

Kinematic cuts:
• At mid-rapidity (matches RHIC experiments)

• Only jet matched to high-𝑝T IP per event

19

Details
Paper: https://arxiv.org/abs/2412.15440 
Code: https://github.com/david-stewart/jet_and_thermal

Inputs

𝑝T,jet
reco

𝜌bkg

Ajet
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2

3

…

1

2

…

1

2

… 𝑝T,jet
truth

Output

100

50 50

Trained using Tensor flow
RELU activated nodes
12 epochs per each training

Data: pp jets embedded in hydro background

https://arxiv.org/abs/2412.15440
https://github.com/david-stewart/jet_and_thermal
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NN on pp jets embedded in hydro background:
Machine learning finds strong discriminatory power from constituent 𝑝T (particularly 2nd highest one)

Residual error for jets from events 
with Ƹ𝑝T ∈ 30,31  GeV/𝑐 Same result found in the PYTHIA+thermal background for 2.76 TeV events

 -> refer to R. Haake and C. Loizides (2019), arXiv:1810.06324 [nucl-ex]



• Points: ⟨𝛿𝑝T,jet⟩

• Bars: 𝜎 𝛿𝑝T,jet
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TRAINING:  NNAllReco on pp jets embedded in hydro 
background:

Distributions of 𝑝T,jet : truth and 𝑝T,jet
corr 

from NNAllReco and AB method

• Both the AB method and NN “know” : low 𝑝T,jet
reco jets are not from “𝑝T,jet

truth < 0 GeV/𝑐 jets” on upward background fluctuations

• Only NN “knows” that high 𝑝T,jet
reco jets do not result from  “𝑝T,jet

truth > 60 GeV/𝑐 jets”. 

(Warning: ML will always exploit boundary conditions if it can!)
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NNAllReco on pp jets embedded in hydro background:

Distributions of 𝑝T,jet : truth and 𝑝T,jet
corr 

from NNAllReco and AB method

• Both the AB method and NN “know” : low 𝑝T,jet
reco jets are not from “𝑝T,jet

truth < 0 GeV/𝑐 jets” on upward background fluctuations

• Only NN “knows” that high 𝑝T,jet
reco jets do not result from  “𝑝T,jet

truth > 60 GeV/𝑐 jets”. 

(Warning: ML will always exploit boundary conditions if it can!)

Neural Networks (NN) training note:

• Must use a uniform 𝑝T,jet
truth

 

distribution for training; otherwise, 
ML will simply exploit the steeply 
falling spectrum and always guess 
upward fluctuations



Evolution of 𝛿𝑝T for NNAllReco with incremental quenching:
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• The average value (the 
background pedestal) is 
biased (≠ 0)
• We are not measuring 

background

• The NN correction values 
of 𝑝T,jet

corr systematically 
under-predicts the truth 
values with increasing 
quenching

• Biggest change w.r.t. first 
2 fm of quenching Values here for jets from events generated with Ƹ𝑝T ∈ 30,31  GeV/𝑐



Summary of evolution of ⟨𝛿𝑝T,jet⟩ 

and 𝜎 𝛿𝑝T,jet  w.r.t. quenching
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• ⟨𝛿𝑝T,jet⟩ and 𝜎 𝛿𝑝T,jet  plotted for 
jets at a range of 𝑝T

• Values for hydro quenched jets 
(horizontal lines) are again consistent 
with those of  ~3.5 fm brick 
quenched jets

• Values are both 𝑝T and quenching 
dependent, but (except for high-𝑝T 
⟨𝛿𝑝T,jet⟩) monotonic w.r.t. quenching

Values here for jets from events generated with Ƹ𝑝T ∈ 30,31  GeV/𝑐
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Perform an 𝑅AA “measurement” with each NN:

25

Perform leading jet 𝑅AA “calculation”:

• Generate a full spectrum of jets 
quenched in 3.5 fm of QGP:
 𝑝T,jet

quenched
 

• Embed 𝑝T,jet
truth into hydro 

backgrounds and cluster:
 𝑝T,jet

reco

• Use same steps as an 
experimental analysis to

“measure” 𝑝T,jet
quenched

 from 
𝑝T,jet

reco (and 𝜌bkg)

• Compare the measured 𝑅AAto 
the actual 𝑅AA

• Results indicate how biases in 
𝛿𝑝T,jet propagate 

“actual” 𝑅AA
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Perform leading jet 𝑅AA “calculation”:

There are three points where 

the ML-based procedure is 

sensitive to jet fragmentation: 

• measured input spectra

• the response matrix

• and the training

Our simulated analysis:

Train NN: pp jets 
embedded in 

“measured” (hydro) 
background

Make response matrix:
• Embed pp jets into 

measured (hydro) 
background

• Cluster and find 𝑝T,jet
reco and 

matched to the embedded 

𝑝T,jet
truth

• Correct:

 𝑝T,jet
reco 𝑝T,jet

corr

Measure “data” 
(jets quenched in 3.5 fm 
brick embedded into 
hydro background) and 
background correct with 
NNs:

𝑝T,jet
corr𝑝T,jet

reco

𝑝T,jet
corr [GeV/𝑐]

Unfold measured 𝒑𝐓,𝐣𝐞𝐭
𝐜𝐨𝐫𝐫 : 

Single Bin Efficiency 

ቮ
𝑝T,jet

corr

𝑝T,jet
truth

𝑖−𝑏𝑖𝑛

.

d
N

L
e

ad
Je

t

d
𝑝

T

A

A

B

B

C

C

pp jets
pp jets
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𝛿𝑝T,jet 

biases
Correction Biases

Bayesian Unfold.
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Perform leading jet 𝑅AA “calculation”:
Result: Significantly biased 𝑅AA

LeadJet



Results for 𝑅AA
LeadJet

 using all NN’s (as well as AB method)

• The AB method is accurate
(use the method for both background 
correction and construction of 
ℳ 𝑝T,jet

truth, 𝑝T,jet
reco ȁpp )

• NNAB uses only 𝜌bkg, 𝐴jet, and 
𝑝T,jet

reco is equally accurate as AB 
method

• All other NNs generate 

significant bias in 𝑅AA
LeadJet
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Perform leading jet 𝑅AA “calculation”:



ML: Where to go from here? – Using jet substructure

If we wish to use jet substructure to correct for 
background in quenched jets, we must use either/or:

a) Know that we have different substructure scenarios 
which bound the effects on the results
(How to report most probably results?)

b) For each substructure observable used, be able to 
generate representative data for ML training:

- This would probably mean already knowing the quenching 
present to match/qualify the training data

- Could be a virtuous research cycle – but is not a trivial problem
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ML: Where to go from here? – Using jet background

30

We have quite a lot of jet 
background data (min bias) 
events, so that we can train ML 
to recognize ”background” (or 
“fake”) jets to distinguish from 
those with real jet constituents
• Quite a lot of interesting work 

in ML for detecting/classifying 
anomalies → might be mostly 
independent of jet 
substructure.

• Might find a 𝑝T cutoff at which we can 
declare an actual jet “fully 
quenched”/indistinguishable from 
background.

• If a good, robust, “fake jet” classifier 
can be trained, it may dramatically 
decrease the fake to real jet ratio at 
low 𝑝T,jet and therefore allow 

measurements at lower 𝑝T,jet



Thank You

Special thanks to Hannah Bossi, Chun Shen, Raymond James, and 

Helen Caines for conversation, expertise, insight, and help
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Extra Slides
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a. Highest-𝑝T IP: 𝜂 ≤ 1 

b. Highest 𝑝T jet from truth constituents 
within
Δ𝑅 ≤ 0.4 from IP is “truth jet”

c. Highest 𝑝T jet from truth+bkg constituents 
within Δ𝑅 ≤ 0.3 of truth jet is “reco jet”

36

Details
Paper: https://arxiv.org/abs/2412.15440 
Code: https://github.com/david-stewart/jet_and_thermal)

a. 𝜂IP < 1.0

b. “truth jet”: 
max 𝑝T  jet within Δ𝑅(IP) < 0.4

c. “reco jet”: max 𝑝T  jet within Δ𝑅(truth jet) < 0.4

Simulations cuts: Use only matched jet to leading parton

https://arxiv.org/abs/2412.15440
https://github.com/david-stewart/jet_and_thermal


IP with resulting hadrons

• Highest 𝑝T (“leading”) parton at 
𝑝T

IP = 22 GeV/𝑐

37

• Resulting hadrons from initial 
scattering

(second, recoiling 
IP about here)

JETSCAPE simulation



How could 𝛿𝑝T,jet biases propagate in actual measurement?
• Embed the quenched spectra in 

hydro background, cluster, and 
background correct (using NN’s) to 
𝑝T,jet

reco

• Embed a pp spectra into hydro 
background, cluster, and 
background correct (using NN’s) to 
𝑝T,jet

reco

• Use the collection of 𝑝T,jet
truth, 𝑝T,jet

reco  
to generate a response matrix 
ℳ 𝑝T,jet

truth, 𝑝T,jet
reco ȁpp (in experiment 

to correct for detector efficiency)

• Save unmatched 𝑝T,jet
truth as misses 

and unmatched 𝑝T,jet
reco as fakes

38
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Perform leading jet 𝑅AA “calculation”:



Jet measurement: 𝑝T,jet
corr = 𝑝T,jet

reco − 𝜌𝐴jet

39

ExampleJETSCAPE simulation Simulation Event Example



Background Particles Only:
anti-𝑘T clustering finds many “fake” jets

40

ExampleJETSCAPE simulation



Jet measurement: 𝑝T,jet
corr = 𝑝T,jet

reco − 𝜌𝐴jet

41

ExampleJETSCAPE simulation Simulation Event Example



Background Particles Only:
anti-𝑘T clustering finds many “fake” jets

42

ExampleJETSCAPE simulation



Another example:

43

ExampleJETSCAPE simulation

This jet is on a downward 
fluctuation of background 

particles – in analysis this is 
discarded because 𝑝T,jet

corr <

0 GeV/𝑐



𝜌bkg from 𝑘T jets: median (𝑝T
jet

/𝐴_jet)
(cluster all particles, exclude 2 highest values)

44

ExampleJETSCAPE simulation



Measured jets, anti-k𝑇:  𝑝T
corr ≡ 𝑝T

reco − 𝜌bkg𝐴jet

45

ExampleJETSCAPE simulation
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T. Sakaguchi, Overview of latest results from PHENIX. 
HardProbes2018.PoS:, 035 (2019).
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10.1103/PhysRevC.96.024905

https://doi.org/10.1103/PhysRevC.96.024905
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