Phenomenology of Jet Drift in Heavy Ion Collisions

(arXiv: 2110.03590) & (arXiv:2412.05474)

Hot Jets (UIUC) 2025 9th January, 2025 Supported in part by DoE Grant (DE-SC0024560) Supported in part by a start-up grand from NMSU

In collaboration with Hasan Rahman, Matthew Sievert, and Ivan Vitev

Outline

 Motivation, Reminder of Jet Drift, & Possible Signatures
 Introduction of Anisotropic Parton Evolution (APE)
 Selected APE Results
 Discussion of Implications

The State of Hard Probe Tomography

- Delivery of hard probe tomography lackluster
 - Many microscopic models obtain results similar to data (e.g. ch. had. R_AA)
- Two options for successful hard probe tomography
 - More discriminating observables (EECs?, jet substructure?)
 - More discriminating regions of phase space (e.g. < 10 GeV)
- Both require new precision perturbative calculations

Anisotropic Jet Broadening: Jet Drift

- "Jet Drift": Preferential broadening in direction of medium flow
- Part of a "New" class of $\mathcal{O}\left(\frac{\mu}{E}\right)$ pQCD effects: asymmetric / anisotropic

Flow enhanced and flow direction controlled

$$\left| \vec{q}_{drift}
ight
angle = \hat{e}_{\perp} \int d\tau \frac{3}{E(\tau)} \frac{\mu^2(\tau)}{\lambda(\tau)} \ln \frac{E(\tau)}{\mu(\tau)} \frac{u_{\perp}(\tau)}{1 - u_{\parallel}(\tau)}$$

$$\frac{1}{\lambda} = \sigma \rho$$
$$\rho \propto T^{3}$$
$$\mu \propto T$$

Energy suppressed

Temperature/Density Enhanced

Analytic Pheno. L. Antiporda, J. Bahder, H. Rahman & M. D. Sievert Phys.Rev.D 105 (2022) (arXiv: 2110.03590)

Possible Signatures of Jet Drift in Leading Hadrons

1 fm

- Modification of suppression (A)
 - Deflecting away from flowing hot spots
 - Particle sees reduced integrated density
- Dihadron/dijet acoplanarity enhancements (B)
 - Particles couple to same "attractor" in the medium
- Anisotropic flow modification (C)
 - Particles couple to soft anisotropic flow

DukeQCD's HIC Event Generator

- Highly tuned to soft sector observables
 - Reliable picture of final state
 - Not necessarily good description of intermediate dynamics – drift distinguishes
- Large event-by-event fluctuations
 - Maximizes disruption of event correlated drift

etc.: (arXiv:1808.02106)

The Wonders of the Open Science Grid

- Do you have high throughput computing needs?
- Do you work for a US institution?

Check out the Open Science Pool!

Total core hours this project has used to date:

https://osg-htc.org/

core hours

Or... 181 core Years

No Suppression Reduction

- Drift does not measurably modify R_AA(p_T)
 - Very useful can tune coupling
 - Rad: g=2.0, Rad + Coll: g=1.6
- Additional sources of high-pT energy loss reduce effective drift coupling
- Better performance at low-pT can only enhance drift

Deflection Size & Acoplanarity Enhancement

- Note centrality reversal
 - V_2 correlated to event plane
 - Acoplanarities access absolute deflections
- Initial acoplanarity fluctuation will change magnitude
 - Currently tree-level scattering: coplanar "dijets"

Colored band: drift +/- 25 % strength

Colored band: drift +/- 25 % strength

V₂ is Enhanced by Drift

- Large surviving v_2 modulation at low- p_T
 - Compare to: ~ +/- 0.005 exp. uncertainty
- Conservative estimate of drift
 - Low temp cutoff removes large drift region

1 fm

• CNM effects + Coll. Energy loss reduce relative strength

Effect too Small for You? Many Choices to Enhance!

- Hadronization variation
 - E.g. "uniform Wigner Distribution" coalescence model (arxiv:nucl-th/0301093)
- Effect may be large in varied medium models
 - E.g. enhancement in optical Glauber initial conditions

Effect too Small for You? Make selection cuts!

- Consider cuts on event geometry (ϵ_2 , or soft v_2) or other collision systems
 - E.g. $v_2 > 0.15$
 - More in Hasan's talk
- Fluctuating drift & EL can result in much larger enhancements on avg.

Importance for the R_AA x v_2 Puzzle

Higher Harmonic V_n's are Enhanced by Drift

v3 & v4 from Perturbative Energy Loss

- Drift produces higher harmonic coupling
- Possible importance to $v_3 \& v_4$ puzzle
- Difficult to couple to small anisotropies with energy loss alone

Drift v_n sensitive to pathlength ordered internal medium props.

- Drift distinguishes between high anisotropy at early times vs at late times via interplay with energy loss
 - Powerful additional constraint on evolution dynamics!!!
- How would a hard + soft Bayesian parameter extraction like Bayes-DREENA differ with the inclusion of drift?
 - Possibly selects on slightly smaller anisotropy, likely changes story of free streaming parameters

Anisotropic Jet Substructure

- People have been thinking about anisotropic radiation distribution for some time
 - Flow anisotropy as Lorentz boost (Armesto, Salgado, & Wiedemann)
 - Perturbative scalar calculation of radiation (Sievert, Sadofyev, Vitev)
 - Jet substructure harmonics (<u>Barata, Milhano, & Sadofyev</u>)
 - Perturbative real gluon calculation of radiation (Kuzmin & López)
- Drift of jet particles is also likely important!

Vacuum

Static medium:

Flowing medium:

Drift of Ensemble of Particles

Δj , v_n of substructure

- Energy suppression naturally produces dispersion of hard and soft particles within jet
- Sub-eikonal property a detriment for inclusive measurements, but well suited for jet substructure modification

Anisotropic Jet Wake

- Conservation of momentum should be anisotropic wake
 - Constructive with induced radiation anisotropy
- How does this interplay with jet substructure anisotropies?
 - Possible anisotropic background contamination of jet substructure observables

Diffusion Wake 2 Mach Cone 1 Signed Z⁰ wake measurement could reveal anisotropy relative to event plane

The Elephant in the Room...

- Is this even a perturbative regime?
- How seriously should you take these results?

These results are manifestly incomplete, but they show that drift has robust signatures that are nonzero in even the most conservative estimate.

Next Steps:

- Fluctuating Drift & Energy Loss, Jet Substructure
 - Drift-dispersion + flow-induced radiation => jet substructure anisotropy
 - Jo Bahder, Hasan Rahman, Matt Sievert, & Ivan Vitev
- CNM drift investigations
 - Drift due to polarized nuclei
 - Nicholas Baldonado, Alex Garcia, & Matt Sievert
- Complete survey of important interactions to $\mathcal{O}\left(\frac{\mu}{E}\right)$
 - Improve low-E hadronization formalisms
 - Better treatment of gradients & new diagrams

Thanks a Bunch! See more details: (arXiv:2412.05474)

Also see Hasan Rahman's talk in mere moments!!!

Jet Broadening – Isotropic vs Anisotropic

field

0

0

•

Isotropic

Anisotropic

Flow

Gradients

 $a_i(q)$

Isotropic

 g_{eff}

 $p_{s,i}-q$

No vector info

 \mathcal{X}_{i}

 $p_{s,i}$

 $a_i^{\mu a}(q) = g^{\mu +}(t^a)_i \left[2\pi \delta(q) \right]$

medium quark moves lightcone (-)

Jet quark moves lightcone (+),

Jet quark moves lightcone (+),

Difference in setup – constraints on external gluon

medium quark moves with medium flow Two vector directions associated with the medium

Medium Gluon Field Potentials

All Diagrams

Does Drift Survive Event Averaging?

 Naively, one might expect cancellation via event averaging

L. Antiporda, J. Bahder, H. Rahman & M. D. Sievert

Phys.Rev.D 105 (2022) (arXiv: 2110.03590)

- Coupling to event anisotropic flow shown in glauber elliptic geometry to preserve effect
 - Fluctuating event plane, centrality
- What about in realistic heavy ion collisions?

6

Energy Loss Effects

Radiative

- Single Emission GLV @ 1st order in opacity w/ finite kinematic bounds (q, k)
- Interpolated tabulated results
- Gyulassy, Levai, Vitev (2000) (arXiv:0006010)

$\begin{aligned} & \frac{dE}{d\ell} = -C_R \frac{1}{2} \mu^2 \ln \left(2^{\frac{N_f}{2(6+N_f)}} 0.920 \frac{\sqrt{3ET}}{\mu} \right) \end{aligned}$

- Braaten & Thoma (1991) (iNSPIRE:317898)
- Light quarks: E >> m^2/T regime
- Gluons: CA/CF = 9/4 (arXiv:2305.13182)

Ape Trajectories

- Approx. Binary collision density weighting of production points
- Computed within QGP phase of hydro backgrounds
 - EL & Drift cut off at T < 155 MeV
 - Cuts off highest flow region!!!
- Dynamic trajectories respond to medium flow

31

• Deflections, zigzags, weirdness

Parameter Fits & Model Choices

- DukeQCD "hic-eventgen" medium model parameters set by Bayesian parameter estimation (arXiv:1804.06469)
- Pythia input + pCNM determines partonic spectra
- Coupling from high pT RAA (30-50%)
- Choice of fragmentation function fits
 - Large change to scale of results!

How can delta v_n increase after fragmentation?

 Deflections increase v₂ on average, but some deflections decrease v₂ (relative to energy loss alone)

33

 Fragmentation increases the relative correlation of deflections to flow, despite decreasing the average magnitude

Drift at the EIC

- Cold nuclear matter anisotropies can couple similarly to QGP flow
 - "Spin flow", gradients, etc.
- Possible distinction between preequilibrium and equilibrium anisotropy
 - Could provide constraints on preequilibrium qhat
- Possible large impact on tomographic parameter extraction via hard probes
- Comparative laboratory for jet substructure dispersion

