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Jets in Vacuum:  a Microcosm of QCD

• Basic jet production: hard parton-parton scattering at high virtuality 𝑄𝑄2

• Cascade of radiation falling in virtuality down from 𝑄𝑄2 to the hadronization scale Λ2

• Jets and substructure: radiative QCD evolution from perturbative to nonperturbative 

𝑸𝑸𝟐𝟐
𝚲𝚲𝟐𝟐

𝑒𝑒+ + 𝑒𝑒− → 𝑗𝑗𝑗𝑗𝑗𝑗1 + 𝑗𝑗𝑗𝑗𝑗𝑗2 + 𝑋𝑋
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Jets in Medium:  Multi-Scale Probes

• At high 𝑝𝑝𝑇𝑇 , jets lose energy primarily by 
radiating a shower of soft gluons

 In vacuum:  Sudakov factor

 In medium: LPM effect

• The interference pattern of the shower carries 
information about the medium

 Position-space information:  𝜌𝜌(𝑥⃑𝑥)

 Momentum space information:  𝑣𝑣(𝑞⃑𝑞)

Landau, Pomeranchuk, Dokl. Akad. Nauk Ser. Fiz 92 (1953)

Migdal, Phys. Rev. 103 (1956)

Induced Radiation
+ accompanying 𝒑𝒑𝑻𝑻 broadening
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Jets as Interferometers for Medium-Induced Radiation

Formation Time

 Edge phases of the emission region  Phase slip from scattering

𝑒𝑒𝑖𝑖(𝑧𝑧1 / ℓ𝑓𝑓) − 𝑒𝑒𝑖𝑖(𝑧𝑧2 / ℓ𝑓𝑓) 𝑒𝑒𝑖𝑖 𝑧𝑧3 (1 / ℓ𝑓𝑓
′  − 1 / ℓ𝑓𝑓)
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 Energy Loss

Canonical Signatures of Medium Modification

He, Vitev, Zhang, Phys. Lett. B713 (2012)
ALI-PREL-353023

 Jet quenching, 𝛾𝛾+jet imbalance …

 Transverse Momentum Broadening

 Dijet / 𝛾𝛾+jet acoplanarities …
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Asymmetric Measures of Medium Modification

• Model employing shifted potentials 
to mimic boosted fluid flow.

Armesto, Salgado, Wiedemann,
Phys.Rev.Lett. 93 (2004)

• Linearized Boltzmann 
Transport calculation of 
of jet asymmetries 
induced by gradients

He, Pang, Wang
Phys.Rev.Lett. 125 (2020)



• All versions of jet quenching theory 
assume a separation of scales between 
the jet and the medium  𝜇𝜇

𝐸𝐸
≪ 1 

Coupling to Collective Flow:  Leading Power
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• At leading (eikonal) power in the jet 
energy, the medium is effectively static: 𝑝𝑝 ⋅ 𝑢𝑢 ≈ 𝐸𝐸 𝑢𝑢0 + ⋯ 

• Can be written as a frame-independent result (𝑝𝑝 ⋅ 𝑢𝑢), 
but the calculation is valid only to leading power.

e.g., Xiao et al., Phys. Rev. C109 (2024)
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Coupling to Collective Flow:  Sub-Leading Power

Fully relativistic velocity Velocity-dependent potential

• Propagate the sub-eikonal, velocity-dependent 
corrections to the Gyulassy-Wang potential

 Enhanced collinear scattering with the flow

 Correlated collisional energy transfer

Gyulassy, Wang, Nucl. Phys. B420 (1994)

 GW:  Target masses assumed to be 
heavy (neglects medium recoil)

Sadofyev, MDS, Vitev,   Phys. Rev. D104 (2021)
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Jet Drift:  Skewed Momentum Broadening

Shifted potential Energy ShiftSub-eikonal vertex

• The leading (linear) flow-dependent correction skews the jet distribution 
preferentially along the direction of the flow velocity.

Sadofyev, MDS, Vitev,   Phys. Rev. D104 (2021)



• Simplest implementation:  the net transverse 
deflection due to the preferred direction.

Jet Drift:  Skewed Momentum Broadening
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 Jets inherit the correlation to geometry 
embedded in the collective flow 𝑢𝑢(𝑥𝑥)

 Geometry coupling above and beyond path-
length dependence.

Jo Bahder, 
Thurs 1/9, 10am

Hasan Rahman, 
Thurs 1/9, 11am

 Jet drift influences many observables



What We Can We Learn from Jet Drift – The Constant Slab
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𝜃𝜃

𝑢𝑢

𝑢𝑢𝑦𝑦

𝑢𝑢𝑥𝑥

𝐿𝐿

𝛼𝛼

𝑢𝑢∥
𝑢𝑢⊥

 Lab frame
Mid-rapidity (2+1D)

Initial jet direction

• Consider a “brick” with constant flow velocity 
𝑢𝑢 (a “constant slab” of flowing plasma)

• Flow velocity has magnitude 𝒖𝒖 and angle 𝜶𝜶 
(medium CMS rest frame), while the jet 
moves at an angle 𝜃𝜃.

Antiporda, Bahder, Rahman, MDS, Phys. Rev. D105 (2022)



𝜶𝜶

2 cos−𝟏𝟏 𝑢𝑢

What We Can We Learn from Jet Drift – The Constant Slab
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 Zero crossing when 𝜽𝜽 = 𝜶𝜶

 Two extrema centered about 𝛼𝛼 
with total width 𝟐𝟐 𝐜𝐜𝐜𝐜𝐜𝐜−𝟏𝟏 𝒖𝒖

 Entire peak / zero / peak 
structure becomes narrower 
and larger as 𝒖𝒖 → 𝟏𝟏.

• Deflection encodes tomographic 
information about the flow:

Antiporda, Bahder, Rahman, MDS, Phys. Rev. D105 (2022)



What We Can We Learn from Jet Drift – The Constant Slab
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• The flow direction 𝑢𝑢 is an attractor 
of the jet trajectories.

 Preferential kick towards 𝒖𝒖 no 
matter the original direction

 Given enough time, jet trajectories 
converge to the flow direction

 The time constants carry 
information about the fluid speed.

Antiporda, Bahder, Rahman, MDS, 
Phys. Rev. D105 (2022)



What We Can Learn from Jet Drift:  Fluctuating Gaussian
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• Consider Gaussian ellipse toy model, with 
the geometry and flow determined from a 
fluctuating impact parameter

𝐻𝐻 = 4𝑅𝑅2 − 𝑏𝑏2 1/2

𝑊𝑊 = 2 𝑅𝑅 − 𝑏𝑏

• Flow is assumed to be proportional to the 
gradients −∇𝑇𝑇

Antiporda, Bahder, Rahman, MDS, 
Phys. Rev. D105 (2022)



⟨𝑞𝑞
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑⟩

What We Can Learn from Jet Drift:  Fluctuating Gaussian
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𝑊𝑊 = 1
H = 2

• Folding jet drift with the event geometry converts 
what is locally a directed flow (“v1 of jets”) into a 
global elliptic flow (v2).

 Local cos𝜙𝜙     global cos 2 𝜙𝜙

 The event plane (minor axis) becomes the 
attractor for jet trajectories

 The perpendicular direction (major axis) 
becomes a repulsor for jet trajectories

• Simplest picture for jets produced at the center:

Antiporda, Bahder, Rahman, MDS, 
Phys. Rev. D105 (2022)



What We Can Learn from Jet Drift:  Fluctuating Gaussian
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 Production point fluctuations
(binary collision sampling)

 Impact parameter fluctuations

• The conclusions are robust and survive the 
inclusion of fluctuations:

Antiporda, Bahder, Rahman, MDS, 
Phys. Rev. D105 (2022)



• Through folding with the event geometry, 
jet drift (a locally “v1 type” effect) is 
converted into elliptic flow (a “v2 type” 
correlation with the event plane).

Implications:  Jet Drift and Elliptic Flow
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 Some features are specific to this 
model (e.g., 𝑣𝑣3 = 0)

 Some features are generic: 
systematic enhancement of 𝒗𝒗𝟐𝟐 
(and other even harmonics?)  

Antiporda, Bahder, Rahman, MDS, 
Phys. Rev. D105 (2022)



arXiv: 2412.05474

The Next Frontier:  Jet Drift in EBE Heavy-Ion Collisions
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 Studies jet drift in event-by-event viscous 
hydrodynamics simulations.

 Quantitative enhancement to v2 of jets, especially 
at lower pT (sub-eikonal effect)

 Competes with conventional mechanisms (path-
length-dependent energy loss) for v2.

https://inspirehep.net/literature/2857283


Searching for “Designer” Observables
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• Although “low hanging fruit,” the enhancement of 
v2 due to drift is not unique to drift.

 Natural missing element of the “𝑅𝑅𝐴𝐴𝐴𝐴 to v2 Puzzle”

 Larger impact on the deflection magnitudes 
(acoplanarities) although not correlated to the event 
plane.

 Look for 3-point correlations?  (e.g. 𝛾𝛾 + 𝑗𝑗𝑗𝑗𝑗𝑗 
correlated with the reaction plane)



A New Industry:  Asymmetric Measures of Jets
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 Sievert et al: 2104.09513 2207.076792110.03590 2412.05474

 Vitev et al: 2412.12250

 Sadofyev et al: 2309.006832304.037122207.071412202.08847

 Wang et al: 2001.08273 2402.002642210.065192204.05323

• A representative selection:  (note that groups overlap)

https://inspirehep.net/literature/1859289
https://inspirehep.net/literature/2116031
https://inspirehep.net/literature/1939969
https://inspirehep.net/literature/2857283
https://inspirehep.net/literature/2860321
https://inspirehep.net/literature/2693464
https://inspirehep.net/literature/2650004
https://inspirehep.net/literature/2115396
https://inspirehep.net/literature/2034636
https://inspirehep.net/literature/1776973
https://inspirehep.net/literature/2753901
https://inspirehep.net/literature/2165146
https://inspirehep.net/literature/2065927


Lesson:  Power of Antisymmetry
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• Bread & butter jet quenching observables are driven by 
isotropic processes:  energy loss (𝑅𝑅𝐴𝐴𝐴𝐴), 𝑝𝑝𝑇𝑇 broadening 𝜃𝜃0𝜃𝜃

• Even locally, there are many competing “backgrounds”:
vacuum Sudakov shower, gluon saturation, cold nuclear matter 
effects, etc

 Antisymmetric observables can select on different microscopic channels which 
have fewer backgrounds than the symmetric ones

 Cold QCD:  transverse spin asymmetries, parity-violating asymmetries, etc.
 Hot QCD:  preferred deflection of jets

 Power-suppressed effects introduce new quantum numbers to the process (flow)



• The radiation emitted by a hard 
parton is a sensitive interferometer 
to details of the nuclear medium.

Conclusions
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• As an antisymmetric interaction with the medium, jet drift 
is “locally v1 type” resulting in a ⟨cos𝜙𝜙⟩ correlation with the 
flow direction.

• Event geometry converts this into a 
global ⟨cos 2𝜙𝜙⟩ correlation, enhancing 
the elliptic flow (among other effects).
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