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Motivation
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Wake response
S. Sapeta, U. A. Weidemann, EPJ C 55 (2008) 293-302

Enhanced parton splitting
A. Luo et al., PLB 837 (2023), 137638

Different underlying physics mechanisms (e.g. enhanced parton splitting or 
wake response) → Different jet hadrochemistry modifications

Measurements of K/𝛑 and p/𝛑 ratios in pp and Pb–Pb collisions within jets and the underlying event (UE) 
→ Sensitive to jet-medium interactions 
→ Investigate the relative contributions of fragmentation and coalescence in hadronization

Early prediction



ALICE Small System Measurements
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Baryon and 
strangeness production 
of 𝐕𝟎s/cascades in jets 
is much lower than UE 
or inclusive in pp and      
p–Pb.

• Ω production is 
less clear ALICE Phys. Rev. C 

101 (2020) 044907

ALICE JHEP 07 (2023) 136

ALICE Phys. Lett. B 
827 (2022) 136984

Other relevant 
measurements

UE

pp p–Pb

Baryon

Strangeness
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𝚲/𝐊𝐒𝟎 ratio obtained in p–Pb collisions is systematically higher than that in pp 
collisions for 2 < 𝒑𝑻 < 4 GeV/c 

ALICE JHEP 07 (2023) 136

ALICE Small System Measurements

Baryon 
production

p–Pb
pp
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Large systematic 
from 

determination of  
combinatorial jet 

contributions

STAR pp and Heavy-Ion Measurements

RHIC jets with 
track bias do not 

exhibit p/𝛑
modification in 

heavy ion collisions 
within systematics

STAR Preliminary
G. Dale-Gau Hard Probes 2024



The ALICE Detector in Run 2
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ALICE’s excellent particle identification (PID) capabilities are ideal for this measurement! 

Time Projection Chamber (TPC)
- Low 𝑝! (0.25-0.8 GeV/c) and high 𝑝!
(3-20 GeV/c) PID via energy loss (dE/dx)
- Jet reconstruction via charged tracks 
(with ITS)

Time of Flight (TOF)
- Intermediate 𝑝! (0.6-4.5 GeV/c) PID 
via particle velocity (𝛽)



𝒑𝐓 𝐜𝐡 𝐣𝐞𝐭
𝐫𝐚𝐰 𝐬𝐮𝐛 ≠ 𝒑𝐓

𝐜𝐡 𝐣𝐞𝐭

• 𝑝& '( )*+,-. /01: Raw jet 𝑝& corrected 
with area-based pedestal 
subtraction

• 𝑝& '( )*+,-. /01 > 60 GeV/c
substantially reduces the effect 
of purely combinatorial jets 

Jet Reconstruction
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anti-𝑘& R=0.4 charged-particle jets

𝑝& '( )*+
,-. /01 = 𝑝& '( )*+

,-. − A)*+ ⍴



PYTHIA K/π dependence on 𝑝/
01 234
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Expect weak jet 
𝒑𝐓 dependence 
in particle ratios

Currently 
accounted for in 
results’ 
systematics by 
varying minimum 
𝒑𝐓 𝐜𝐡 𝐣𝐞𝐭𝐫𝐚𝐰 𝐬𝐮𝐛K/π
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PYTHIA p/π dependence on 𝑝/
01 234
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Expect weak jet 
𝒑𝐓 dependence 
in particle ratios

Currently 
accounted for in 
results’ 
systematics by 
varying minimum 
𝒑𝐓 𝐜𝐡 𝐣𝐞𝐭𝐫𝐚𝐰 𝐬𝐮𝐛p/π



• PID is done on 
• Inclusive particles (regardless of jet 

presence)
• All particles in anti-𝑘! jet cone 

(jet+UE)
• Particles in perpendicular cones 

(PC)
• R=0.4 cones at ∆𝜑 = 90° and 
∆𝜂 = 0 from selected jet cones

• Still have UE particles inside the jet 
cones
• Particle-species-based UE 

subtraction is performed after PID 
with PC

Particle Origins
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PID Technique: TOF
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Inclusive Jet+UE

Repeated for K, p particle hypotheses

These results: PID is performed via fits to TOF 𝒏𝛔 particle hypotheses
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PID Technique: TPC
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TPC PID studies underway to extend 𝒑𝐓 range

Inclusive Jet+UE
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PID Spectra Corrections
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Standard PID spectra corrections were 
performed for inclusive, jet+UE, and PC
particles

• Tracking efficiency
• MC inclusive tracks measured / 

MC inclusive particles produced
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PID Spectra Corrections
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Standard PID spectra corrections were 
performed for inclusive, jet+UE, and PC
particles

• Tracking efficiency
• MC inclusive tracks measured / 

MC inclusive particles produced

• TOF matching efficiency
• MC inclusive tracks measured 

and matched to a TOF signal / 
MC inclusive tracks measured
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Standard PID spectra corrections were 
performed for inclusive, jet+UE, and PC
particles

• Tracking efficiency
• MC inclusive tracks measured / 

MC inclusive particles produced

• TOF matching efficiency
• MC inclusive tracks measured 

and matched to a TOF signal / 
MC inclusive tracks measured

• Primary fraction
• Data primary tracks / Data tracks 

measured

PID Spectra Corrections
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PYTHIA + Thermal jet constituents

PYTHIA jet constituents

Thermal jet constituents

Perpendicular cone (PC) particles

PYTHIA + Thermal - PC jet constituents
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Toy Model Studies of Particle Species-Based UE Subtraction
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• Perpendicular cone (PC): 
R=0.4 cones at ∆𝜑 = 90° and 
∆𝜂 = 0 from selected jet cones

• PC underestimates the UE
particles in selected 
PYTHIA+thermal toy model 
jets



Particle Species-Based Underlying Event Subtraction
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Upwards UE 
fluctuation

Downwards 
UE fluctuation

Background 
pedestal

• Perpendicular cone (PC): 
R=0.4 cones at ∆𝜑 = 90° and 
∆𝜂 = 0 from selected jet cones

• PC underestimates the UE
particles in selected 
PYTHIA+thermal toy model 
jets



Particle Species-Based Underlying Event Subtraction
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𝒑𝐓
𝐜𝐡 𝐣𝐞𝐭

𝒑𝐓
𝐜𝐡 𝐣𝐞𝐭𝒑𝐓 𝐜𝐡 𝐣𝐞𝐭𝐫𝐚𝐰 𝐬𝐮𝐛 threshold

• Perpendicular cone (PC): 
R=0.4 cones at ∆𝜑 = 90° and 
∆𝜂 = 0 from selected jet cones

• PC underestimates the UE
particles in selected 
PYTHIA+thermal toy model 
jets



Particle Species-Based Underlying Event Subtraction
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• Perpendicular cone (PC): 
R=0.4 cones at ∆𝜑 = 90° and 
∆𝜂 = 0 from selected jet cones

• PC underestimates the UE
particles in selected 
PYTHIA+thermal toy model 
jets

𝒑𝐓 𝐜𝐡 𝐣𝐞𝐭𝐫𝐚𝐰 𝐬𝐮𝐛 threshold

𝒑𝐓 𝐜𝐡 𝐣𝐞𝐭𝐫𝐚𝐰

𝒑𝐓 𝐜𝐡 𝐣𝐞𝐭𝐫𝐚𝐰



Particle Species-Based Underlying Event Subtraction
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• Perpendicular cone (PC): 
R=0.4 cones at ∆𝜑 = 90° and 
∆𝜂 = 0 from selected jet cones

• PC underestimates the UE
particles in selected 
PYTHIA+thermal toy model 
jets

• Caused by an increased 
probability of selecting a jet 
on an upward fluctuation of 
the background from cutting 
on 𝒑𝐓 𝐜𝐡 𝐣𝐞𝐭𝐫𝐚𝐰 𝐬𝐮𝐛

𝒑𝐓 𝐜𝐡 𝐣𝐞𝐭𝐫𝐚𝐰 𝐬𝐮𝐛

𝒑𝐓 𝐜𝐡 𝐣𝐞𝐭𝐫𝐚𝐰 𝐬𝐮𝐛

𝒑𝐓 𝐜𝐡 𝐣𝐞𝐭𝐫𝐚𝐰 𝐬𝐮𝐛 threshold



Scaling Factor
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• Scaling factor (UE in jets / UE in PC) 
obtained from PYTHIA embedded into 
ALICE MB data to account for this bias
• Separate scaling factor obtained for 

each particle species
• Current systematic: Scaling vs no 

scaling to account for possible 
contamination from jets in the 
ALICE MB events used for 
embedding

Jet cone
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particle
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Toy Model Scaling Factor and Closure
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Closure achieved in toy thermal model
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π Spectra
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Normalizations are calculated 
differently for each particle origin

𝑁!"#$%&𝐴'&&$%& = 𝑁!"#$%&1.8 ∗ 2𝜋

π
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π Spectra

Sierra Cantway (Yale University) Hot Jets 17
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π Spectra
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• UE and Inclusive
are consistent

π
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π Spectra
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• UE and Inclusive
are consistent

• Jet+UE is 
dominated by UE
particles in the 𝑝!
range considered
• Jet portion 

gets 
fractionally 
larger as 
𝒑𝐓 increases

𝑁!"#$%&𝐴'&&$%& = 𝑁!"#$%&1.8 ∗ 2𝜋 𝑁!"#
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π
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K Spectra
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• UE and Inclusive
are consistent

• Jet+UE is 
dominated by UE
particles in the 𝑝!
range considered
• Jet portion 

gets 
fractionally 
larger as 
𝒑𝐓 increases

• Fewer K than 𝛑
for all cases

K
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p Spectra
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• UE and Inclusive
are consistent

• Jet+UE is 
dominated by UE
particles in the 𝑝!
range considered
• Jet portion 

gets 
fractionally 
larger as 
𝒑𝐓 increases

• Fewer p than 𝛑
for all cases

p
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p/π Ratio
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• Probing baryon
production

• Pb–Pb jet has lower 
p/𝛑 than Pb–Pb UE
at intermediate 𝒑𝑻

c*+ 2$'- systematic uncertainty expected to be significantly reduced

p/π
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p/π Ratio
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• Probing baryon
production

• Pb–Pb jet has lower 
p/𝛑 than pp 
inclusive at low 𝒑𝐓

• But we need to 
compare to p/π in 
pp jets to probe jet 
modification → pp 
jet measurement in 
progress!

c*+ 2$'- systematic uncertainty expected to be significantly reduced

p/π
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K/π Ratio
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• Probing strangeness
production

• Pb–Pb jets hint at 
lower K/𝛑 than Pb–
Pb UE

K/π

c*+ 2$'- systematic uncertainty expected to be significantly reduced
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K/π Ratio
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• Probing strangeness
production

• Pb–Pb jets hint at 
lower K/𝛑 than pp 
inclusive 

• But we need to 
compare to K/π in 
pp jets to probe jet 
modification → pp 
jet measurement in 
progress!

K/π

c*+ 2$'- systematic uncertainty expected to be significantly reduced
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ALI-PREL-582548

Summary
• First measurement of π, K, p in jets and UE in Pb–Pb 

collisions
• Baryon production in Pb–Pb jets less than Pb–Pb UE

• Hint of less strangeness production in Pb–Pb jets
than Pb–Pb UE

• pp jet K/π and p/π measurements needed
• Probes possible jet hadrochemistry modification due 

to modified fragmentation or medium response

Outlook
• Unfold to probe jet 𝑝3 dependence
• Extend PID 𝑝3 range with TPC 
• Centrality dependence
• Radial distance from jet axis dependence
• Perform measurement in pp

Summary & Outlook
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BACKUP
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All Particle Origins K/π
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All Particle Origins p/π
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Previous Inclusive Measurements
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ALICE Collaboration, Phys. Rev. C 101, 044907 (2020)

p/π and K/π enhanced in Pb-Pb inclusive particles at intermediate 𝑝! compared to pp
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TPC dE/dx PID Fits
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Integrate for 
raw p yield!

Inclusive Jets

Integrate for 
raw K yield!

Integrate for 
raw 𝜋 yield!

Integrate for 
raw p yield!

Integrate for 
raw K yield!

Integrate for 
raw 𝜋 yield!

𝑓 𝑥 = 𝐴𝑒
- .-/

01

!

(1 + erf 𝛼
𝑥 − 𝜇
𝜎 2

)


