

Probing jet hadrochemistry with measurements of π , K, and p in jets and the underlying event in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV with ALICE

Sierra Cantway for the ALICE collaboration

Yale University

Hot Jets: Advancing the Understanding of High Temperature QCD with Jets

Loomis Lab (UIUC)

1/10/24

Supported in part by

Motivation

Enhanced parton splitting

Wake response

Measurements of K/π and p/π ratios in pp and Pb–Pb collisions within jets and the underlying event (UE)

- → Sensitive to **jet-medium interactions**
- \rightarrow Investigate the relative contributions of **fragmentation and coalescence** in hadronization

ALICE Small System Measurements

Sierra Cantway (Yale University)

ALICE Small System Measurements

STAR pp and Heavy-Ion Measurements

Hot Jets

The ALICE Detector in Run 2

ALICE's excellent particle identification (PID) capabilities are ideal for this measurement!

Time Projection Chamber (TPC) - Low $p_{\rm T}$ (0.25-0.8 GeV/c) and high $p_{\rm T}$ (3-20 GeV/c) PID via energy loss (dE/dx)- Jet reconstruction via charged tracks (with **ITS**) Time of Flight (TOF) - Intermediate $p_{\rm T}$ (0.6-4.5 GeV/c) PID via particle velocity (β)

Jet Reconstruction

anti- $k_{\rm T}$ R=0.4 charged-particle jets

$p_{\mathrm{T\,ch\,jet}}^{\mathrm{raw\,sub}} \neq p_{\mathrm{T}}^{\mathrm{ch\,jet}}$

- $p_{T ch jet}^{raw sub}$: Raw jet p_{T} corrected with area-based pedestal subtraction
- p^{raw sub}_{T ch jet} > 60 GeV/c substantially reduces the effect of purely combinatorial jets

PYTHIA K/ π dependence on $p_{\mathrm{T}}^{\mathrm{ch}\,\mathrm{jet}}$

PYTHIA p/ π dependence on $p_{\mathrm{T}}^{\mathrm{ch\,jet}}$

Particle Origins

- PID is done on
 - Inclusive particles (regardless of jet presence)
 - All particles in anti-k_T jet cone (jet+UE)
 - Particles in perpendicular cones
 (PC)
 - R=0.4 cones at $\Delta \varphi = 90^{\circ}$ and $\Delta \eta = 0$ from selected jet cones
- Still have UE particles inside the jet cones
 - Particle-species-based UE subtraction is performed after PID with PC

PID Technique: TOF

These results: PID is performed via fits to TOF n_{σ} particle hypotheses

Repeated for K, p particle hypotheses

Sierra Cantway (Yale University)

PID Technique: TPC

TPC PID studies underway to extend $p_{\rm T}$ range

PID Spectra Corrections

Standard PID spectra corrections were performed for inclusive, jet+UE, and PC particles

- Tracking efficiency
 - MC inclusive tracks measured / MC inclusive particles produced

PID Spectra Corrections

Standard PID spectra corrections were performed for inclusive, jet+UE, and PC particles

- Tracking efficiency
 - MC inclusive tracks measured / MC inclusive particles produced
- TOF matching efficiency
 - MC inclusive tracks measured and matched to a TOF signal / MC inclusive tracks measured

PID Spectra Corrections

Standard PID spectra corrections were performed for inclusive, jet+UE, and PC particles

- Tracking efficiency
 - MC inclusive tracks measured / MC inclusive particles produced
- TOF matching efficiency
 - MC inclusive tracks measured and matched to a TOF signal / MC inclusive tracks measured
- Primary fraction
 - Data primary tracks / Data tracks measured

Toy Model Studies of Particle Species-Based UE Subtraction

- Perpendicular cone (PC): R=0.4 cones at $\Delta \varphi$ = 90° and $\Delta \eta$ = 0 from selected jet cones
- PC underestimates the UE particles in selected
 PYTHIA+thermal toy model jets

• Perpendicular cone (PC):

R=0.4 cones at $\Delta \varphi$ = 90° and $\Delta \eta$ = 0 from selected jet cones

 PC underestimates the UE particles in selected
 PYTHIA+thermal toy model jets

• Perpendicular cone (PC):

R=0.4 cones at $\Delta \varphi$ = 90° and $\Delta \eta$ = 0 from selected jet cones

 PC underestimates the UE particles in selected
 PYTHIA+thermal toy model jets

• Perpendicular cone (PC):

R=0.4 cones at $\Delta \varphi$ = 90° and $\Delta \eta$ = 0 from selected jet cones

 PC underestimates the UE particles in selected
 PYTHIA+thermal toy model jets

- Perpendicular cone (PC): R=0.4 cones at $\Delta \varphi$ = 90° and $\Delta \eta$ = 0 from selected jet cones
- PC underestimates the UE particles in selected
 PYTHIA+thermal toy model jets
- Caused by an increased probability of selecting a jet on an upward fluctuation of the background from cutting on $p_{\rm T\,ch\,jet}^{\rm raw\,sub}$

Scaling Factor

Toy Model Scaling Factor and Closure

Sierra Cantway (Yale University)

Sierra Cantway (Yale University)

Sierra Cantway (Yale University)

K Spectra

Sierra Cantway (Yale University)

p Spectra

Sierra Cantway (Yale University)

p/π Ratio

- Probing **baryon** production
- **Pb–Pb jet has lower** \bullet p/π than Pb–Pb UE at intermediate p_T

ALI-PREL-582553

 $c_{UE\;Bias}$ systematic uncertainty expected to be significantly reduced

p/π Ratio

- Probing baryon production
- Pb–Pb jet has lower
 p/π than pp
 inclusive at low p_T
 - But we need to compare to p/π in pp jets to probe jet modification → pp jet measurement in progress!

ALI-PREL-302333

c_{UE Bias} systematic uncertainty expected to be significantly reduced

K/π Ratio

c_{UE Bias} systematic uncertainty expected to be significantly reduced

K/π Ratio

- Probing strangeness production
- **Pb–Pb** jets hint at lower K/ π than pp inclusive
 - But we need to compare to K/π in pp jets to probe jet modification $\rightarrow pp$ jet measurement in progress!

c_{UE Bias} systematic uncertainty expected to be significantly reduced

Summary & Outlook

Summary

- First measurement of π , K, p in jets and UE in Pb–Pb collisions
- Baryon production in Pb–Pb jets less than Pb–Pb UE
 - Hint of less strangeness production in Pb–Pb jets than Pb–Pb UE
- pp jet K/ π and p/ π measurements needed
 - Probes possible jet hadrochemistry modification due to modified fragmentation or medium response

Outlook

- Unfold to probe jet p_{T} dependence
- Extend PID $p_{\rm T}$ range with TPC
- Centrality dependence
- Radial distance from jet axis dependence
- Perform measurement in pp

Sierra Cantway (Yale University)

All Particle Origins K/ π

All Particle Origins p/π

ALI-PREL-582528

Previous Inclusive Measurements

ALICE Collaboration, Phys. Rev. C 101, 044907 (2020)

p/ π and K/ π enhanced in Pb-Pb inclusive particles at intermediate $p_{\rm T}$ compared to pp

TPC d*E*/dx PID Fits

