Quantifying Jet Quenching And Medium Response With Two Particle Correlations With PHENIX

Anthony Hodges for the PHENIX Collaboration

Hot Jets: Advancing the Understanding of High Temperature QCD With Jets

January 8th, 2024

Jets as QCD Probes

- Partons undergo hard scattering
 - Large momentum transfer (q^2)
- Hard-scattered partons hadronize into jets
- Jet kinematics ≈ parton kinematics Proton good proxy

Jets as QCD Probes

- Partons undergo hard scattering
 - Large momentum transfer (q^2)
- Hard-scattered partons hadronize into jets
- Jet kinematics ≈ parton kinematics Proton good proxy
- Jets are accessible by pQCD, which makes them very theory-friendly

Differential cross section

 $d\sigma = \int \int \int f_a^A(x_a) f_b^B(x_b) \cdot d\sigma_{ab \to cX} \cdot D_c^h(z) dx_a dx_b dz$

 $\mathsf{R}_{\mathsf{cone}}$

et: colorless states

Hard Scattering

Proton

Jets in Heavy Ion Collisions

- Hard-scattered partons now traverse dense QGP medium
- Energy lost to medium yields modified jets
- Measurement of jet modification allows us to study parton-medium interactions

Differential cross section

$$d\sigma = \int \int \int f_a^A(x_a) f_b^B(x_b) \cdot d\sigma_{ab \to cX} \cdot \frac{D_c^h(z)}{D_c^h(z)} dx_a dx_b dz$$

 $\begin{array}{ll} \text{Modification} & \text{Heavy Ion Collision} \\ D^h_c(z) \to D^h_c(z') \text{ as } p^{Parton} \to {p'}^{Parton} \\ \text{Anthony Hodges, NSF Ascend Fellow, UIUC} \end{array}$

Jet Factories: RHIC and the LHC

Relativistic Heavy Ion Collider

Large Hadron Collider

The Relativistic Heavy-Ion Collider

- Highly versatile collider
- Decades of expansive data collected

The Relativistic Heavy-Ion Collider

Why Jets at RHIC?

- Different jet populations!
- LHC jets largely initiated by gluons
- RHIC jets dominated by quark-initiated jets

Why Jets in Heavy-Ion Collisions at RHIC?

- Jet-medium interactions at RHIC and the LHC have subtle differences
- Jet energies at RHIC typically closer to medium energy scale
- RHIC jets also spend larger part of their evolution in the medium than LHC jets

How We Study Jets

PC: Yi Chen, QM2019

How We Study Jets

PC: Yi Chen, QM2019

Measuring Jets – Two Particle Correlations

• Direct photons: colorless, well-calibrated probe, but statistically limited

Measuring Jets – Two Particle Correlations

- Direct photons: colorless, well-calibrated probe, but statistically limited
- Neutral pion (π^0): not colorless, but abundant
 - Good for high-precision, differential measurements

The PHENIX Detector

- Central arms
 - π coverage in azimuth
 - Pseudorapidity coverage of $|\eta| < 0.35$
- Electromagnetic calorimeter
 - Photon and electron energy
- Drift/Pad chambers
 - Charged hadron momentum
- Beam-beam counters (BBC)
 - Event characterization

• $\frac{1}{N_{Trig}} \frac{dN^{Pair}}{d\Delta\phi} = \frac{1}{N_{Trig}} \frac{N^{Pair}}{\epsilon^{Hadron} \int \Delta\phi} \left\{ \frac{dN_{Real}^{Pair}/d\Delta\phi}{dN_{Mix}^{Pair}/d\Delta\phi} - b(1+2\sum \langle v_n^t \rangle \langle v_n^a \rangle \cos(n\Delta\phi)) \right\}$

• $\frac{1}{N_{Trig}} \frac{dN^{Pair}}{d\Delta\phi} = \frac{1}{N_{Trig}} \frac{N^{Pair}}{\epsilon^{Hadron}\int\Delta\phi} \left\{ \frac{dN_{Real}^{Pair}/d\Delta\phi}{dN_{Mix}^{Pair}/d\Delta\phi} - b(1+2\sum\langle v_n^t \rangle \langle v_n^a \rangle \cos(n\Delta\phi)) \right\}$

Per-trigger (jet) yield of hadrons (what we want to measure)

• $\frac{1}{N_{Trig}} \frac{dN^{Pair}}{d\Delta\phi} = \frac{1}{N_{Trig}} \frac{N^{Pair}}{\epsilon^{Hadron}\int\Delta\phi} \left\{ \frac{dN_{Real}^{Pair}/d\Delta\phi}{dN_{Mix}^{Pair}/d\Delta\phi} - b(1+2\sum\langle v_n^t \rangle \langle v_n^a \rangle \cos(n\Delta\phi)) \right\}$

What we actually measure, the correlation function

• $\frac{1}{N_{Trig}} \frac{dN^{Pair}}{d\Delta\phi} = \frac{1}{N_{Trig}} \frac{N^{Pair}}{\epsilon^{Hadron} \int \Delta\phi} \left\{ \frac{dN_{Real}^{Pair}/d\Delta\phi}{dN_{Mix}^{Pair}/d\Delta\phi} - b(1+2\sum \langle v_n^t \rangle \langle v_n^a \rangle \cos(n\Delta\phi)) \right\}$

Correction for detector inefficiencies

• $\frac{1}{N_{Trig}} \frac{dN^{Pair}}{d\Delta\phi} = \frac{1}{N_{Trig}} \frac{N^{Pair}}{\epsilon^{Hadron}\int\Delta\phi} \left\{ \frac{dN_{Real}^{Pair}/d\Delta\phi}{dN_{Mix}^{Pair}/d\Delta\phi} - b(1+2\sum\langle v_n^t \rangle \langle v_n^a \rangle \cos(n\Delta\phi)) \right\}$

Correction for detector effects

• $\frac{1}{N_{Trig}} \frac{dN^{Pair}}{d\Delta\phi} = \frac{1}{N_{Trig}} \frac{N^{Pair}}{\epsilon^{Hadron}\int\Delta\phi} \left\{ \frac{dN_{Real}^{Pair}/d\Delta\phi}{dN_{Mix}^{Pair}/d\Delta\phi} - b(1+2\sum\langle v_n^t \rangle \langle v_n^a \rangle \cos(n\Delta\phi)) \right\}$

Underlying event subtraction

• $\frac{1}{N_{Trig}} \frac{dN^{Pair}}{d\Delta\phi} = \frac{1}{N_{Trig}} \frac{N^{Pair}}{\epsilon^{Hadron} \int \Delta\phi} \left\{ \frac{dN_{Real}^{Pair}/d\Delta\phi}{dN_{Mix}^{Pair}/d\Delta\phi} - b(1 + 2\sum \langle v_n^t \rangle \langle v_n^a \rangle \cos(n\Delta\phi)) \right\}$

In p+p, nice and flat

•
$$\frac{1}{N_{Trig}} \frac{dN^{Pair}}{d\Delta\phi} = \frac{1}{N_{Trig}} \frac{N^{Pair}}{\epsilon^{Hadron} \int \Delta\phi} \left\{ \frac{dN_{Real}^{Pair}/d\Delta\phi}{dN_{Mix}^{Pair}/d\Delta\phi} - b(1+2\sum \langle v_n^t \rangle \langle v_n^a \rangle \cos(n\Delta\phi)) \right\}$$

In p+p, nice and flat

in A+A...

Underlying Event Subtraction

$$\frac{dN}{d\Delta\phi} = \boldsymbol{b}(1+2\sum \langle v_n^t \rangle \langle v_n^a \rangle \cos(n\Delta\phi))$$
$$\boldsymbol{b} = \frac{\xi \langle N_{Trig} \rangle \langle N_{h^{\pm}} \rangle}{\langle N_{Pairs} \rangle}$$

- Amplitude given by Absolute Background Subtraction method for $p_T^{Hadron} > 1$ GeV/c
 - Phys. Rev. C 81, 014908

Underlying Event Subtraction

• *b* from ZYAM (Zero Yield At Minimum) for $p_T^{Hadron} < 1$ GeV/c to account for over-subtraction

Underlying Event – Flow

$$\frac{dN}{d\Delta\phi} = b(1+2\sum \langle \boldsymbol{v}_n^t \rangle \langle \boldsymbol{v}_n^a \rangle \cos(n\Delta\phi))$$

 v_n terms quantify background shape, come from previous PHENIX analyses

Improved Background Subtraction

- New results (right) from data from 2014, 3.3x more trigger π^0 's
- v_2 , v_3 ,and v_4 subtracted in new results \rightarrow flow contamination removed

Jet Modification: $I_{AA}(p_T)$

Jet Modification: $I_{AA}(p_T)$

- $I_{AA} = \frac{Y_{AA}^{Away}}{Y_{pp}^{Away}}$, bread-and-butter 2PC measurement
- $I_{AA} = 1 \rightarrow \text{No modification}$
- $I_{AA} < 1 \rightarrow \text{Suppression}$
- $I_{AA} > 1 \rightarrow \text{Enhancement}$

11/29/23

Phys. Rev. C 110, 044901 (2024)

- Can we look at modification "inside" the jet?
- Can take difference
 between *differential* yields
 rather than integrated
- How is the actual distribution of particles changed within a jet?

- $\Delta_{AA} = Y_{AA} Y_{pp}$
- Captures jet modification across wide range of $\Delta \phi$ values
- Difference, rather than ratio, better behaved for yields ~ 0

- For high p_T constituents, can see suppression $(\Delta_{AA} < 0)$
- Suppression is most severe at jet core ($\Delta \phi \sim \pi$)

Phys. Rev. C 110, 044901 (2024)

- Enhancement of soft particles seen at wide angles
- For softest jets, this enhancement even appears at the core

Phys. Rev. C 110, 044901 (2024)

Model Comparisons

- Here, Hybrid model is shown with two configurations
- Wake: includes a medium response in the form a hydrodynamic wake of low p_T particles

No wake: energy loss via pQCD only

The Importance of Medium Response

 Jet modification is an interplay between energy loss and the medium's response to that energy

Turning 180°: The Diffusion Wake

 In addition to enhancement wake, recent studies have also sought a corresponding depletion wake near $\Delta \phi \sim 0$

 $0.3 < x_{J_v} < 0.6$

arXiv:2408.08599

Yen-Jie Lee, Hard Probes 2024

37

 $0.6 < x_{\rm uv} < 0.8$

 $90 < p^{\gamma} < 180 \text{ GeV}$

Future PHENIX Results

- Δ_{AA} extracted from previously published results
- Familiar depletion signal for low ξ (high p_T) bins
- High ξ (low p_T) bins will benefit from larger Run 14 dataset in ongoing analysis

Anthony Hodges, NSF Ascend Fellow, UIUC

Summary and Conclusion

- New two-particle correlation results from PHENIX probe modification to the structure of recoil jets
- The yield of high p_T hadrons associated with jets is found to be suppressed, especially at the jet core
- The yield of low p_T hadrons is enhanced, with this enhancement appearing as far as $\frac{\pi}{2}$ [rad] away from the jet peak
- Enhancement phenomenon is captured well by HYBRID model, where it is owed to a hydrodynamic wake of low p_T particles
- Future PHENIX measurements will employ the large-statistics Run 14 dataset to probe jet modification via prompt photon-hadron correlations

Thank You! Questions?

Back-Up

Future Jet-Medium Studies at RHIC

- sPHENIX completed reference p + p run in 2024 exceeding luminosity projections by 200%
- Au + Au run in a matter of months!
- Exciting era of jet-medium interactions awaits!

<u>N</u>

Flow Subtraction – Acoustic Scaling

- Have charged hadron v_n^a for (n = 2,3,4) from PHENIX results
- No $\pi^0 v_3$ or v_4 measured at RHIC energies
- v_n harmonics can be scaled to one another via value g_n

Flow Subtraction – Acoustic Scaling

• Can calculate $\pi^0 v_3$, v_4 by scaling $\pi^0 v_2$ with charged hadron g_n

11/29/23

Jets in Heavy Ion Collisions

what happens to the e

Anthony Hodges, NSF Asisntheoenergy thermalized in the end? 45