RELATIVISTIC (A)CAUSALITY IN HYDRODYNAMICS AND ITS EFFECT ON BAYESIAN ANALYSES

Matthew Luzum

References: T.S.Domingues, R.Krupczak, J.Noronha, T.N.da Silva, J-F.Paquet, ML; Phys.Rev.C 110 (2024) 6, 064904; arXiv:2409.17127 Arthur Lopez, ML; work in progress

University of São Paulo

Hot Jets: Advancing the Understanding of High Temperature QCD with Jets January 9, 2025

HYDRODYNAMIC VALIDITY

- Hydrodynamics central to simulations
- Validity of fluid description not always clear
- Typically derived as expansion around equilibrium
- Sometimes system is far from equilibrium (early times, near jets)
- Not definitive: hydro can be valid far from equilibrium
- Relativistic causality: definitive test
- How important is this issue? Quantify with Bayesian analysis

- Hydrodynamics central to simulations
- Validity of fluid description not always clear
- Typically derived as expansion around equilibrium
- Sometimes system is far from equilibrium (early times, near jets)
- Not definitive: hydro can be valid far from equilibrium
- Relativistic causality: definitive test
- How important is this issue? Quantify with Bayesian analysis

- Hydrodynamics central to simulations
- Validity of fluid description not always clear
- Typically derived as expansion around equilibrium
- Sometimes system is far from equilibrium (early times, near jets)
- Not definitive: hydro can be valid far from equilibrium
- Relativistic causality: definitive test
- How important is this issue? Quantify with Bayesian analysis

- Hydrodynamics central to simulations
- Validity of fluid description not always clear
- Typically derived as expansion around equilibrium
- Sometimes system is far from equilibrium (early times, near jets)
- Not definitive: hydro can be valid far from equilibrium
- Relativistic causality: definitive test
- How important is this issue? Quantify with Bayesian analysis

- Hydrodynamics central to simulations
- Validity of fluid description not always clear
- Typically derived as expansion around equilibrium
- Sometimes system is far from equilibrium (early times, near jets)
- Not definitive: hydro can be valid far from equilibrium
- Relativistic causality: definitive test
- How important is this issue? Quantify with Bayesian analysis

- Bayesian inference: used to extract physical properties from data with systematic treatment of uncertainty
- JETSCAPE performed large-scale analysis of soft sector *Phys.Rev.C* 103 (2021) 5, 054904
- How are these results affected if we don't allow hydro to be used in acausal regime?

Norm. Pb-Pb 2.76 TeV Norm. Au-VA 200 GeV generalized mean nucleon width min. dist. btw. nucleons multiplicity fluctuation free-streaming time scale free-streaming time scale free-streaming energy dep. particitization temperature	N[2.76 TeV] N[0.2 TeV] p w d_{min}^{3} σ_{k} τ_{R} α T_{SW}	[10, 20] [3, 10] [-0.7, 0.7] [0.5, 1.5] fm [0, 1, 7 ³] fm ³ [0,3, 2.0] [0,3, 2.0] fm/c [-0.3, 0.3] [0,135, 0.165] GeV	temperatur (η / s) at k low temp. s high temp. shear relax maximum of temperatur width of (ζ asymmetry
---	--	--	--

e of (n/s) kink ink slope of (n/s)slope of (η / s) ation time factor of (ć / s) e of (c /s) peak /s) peak of (ζ / s) peak

 T_n [0.13, 0.3] GeV [0.01, 0.2] $(n/s)_{ink}$ [-2, 1] GeV-1 alow [-1, 2] GeV-1 ahigh b_π [2.8] (C/S)max [0.01. 0.25] TC [0.12, 0.3] GeV [0.025, 0.15] GeV wζ [-0.8. 0.8] DQC

- Bayesian inference: used to extract physical properties from data with systematic treatment of uncertainty
- JETSCAPE performed large-scale analysis of soft sector *Phys.Rev.C* 103 (2021) 5, 054904
- How are these results affected if we don't allow hydro to be used in acausal regime?

Norm. Pb-Pb 2.76 TeV
Norm. Au-Au 200 GeV
generalized mean
nucleon width
min. dist. btw. nucleons
multiplicity fluctuation
free-streaming time scale
free-streaming energy dep.
particlization temperature

N[2.76 TeV]
N[0.2 TeV]
р
w
a ³ min
σ_k
^T R
α
T _{SW}

[10, 20]
[3, 10]
[-0.7, 0.7]
[0.5, 1.5] fm
[0, 1.7 ³] fm ³
[0.3, 2.0]
[0.3, 2.0] fm/c
[-0.3, 0.3]
[0.135, 0.165] Ge

temperature of (η/s) kink (η/s) at kink
low temp. slope of (η/s)
high temp. slope of (η/s)
shear relaxation time factor maximum of (ζ/s) temperature of (ζ/s) peak width of (ζ/s) peak asymmetry of (ζ/s) peak

[0.13, 0.3] GeV T_n $(n/s)_{kink}$ [0.01. 0.2] [-2, 1] GeV - 1 alow [-1, 2] GeV-1 ahigh b_π [2.8] (C/S)max [0.01. 0.25] [0.12, 0.3] GeV [0.025, 0.15] GeV [-0.8. 0.8] nar

MATTHEW LUZUM (USP)

- Bayesian inference: used to extract physical properties from data with systematic treatment of uncertainty
- JETSCAPE performed large-scale analysis of soft sector *Phys.Rev.C* 103 (2021) 5, 054904
- How are these results affected if we don't allow hydro to be used in acausal regime?

eused	0.25 0.20 0.15 0.10 0.05 0.00 0.10	0.15 0.20 0.25 T [GeV]	0.30 0.35 0.4
e of (η/s) kink hk lope of (η/s) slope of (η/s) ation time facto f (ζ/s)	or	$T_{\eta} (\eta/s)_{kink}$ a_{low} a_{high} $b_{\pi} (\zeta/s)_{max}$	[0.13, 0.3] GeV [0.01, 0.2] [-2, 1] GeV ⁻¹ [-1, 2] GeV ⁻¹ [2, 8] [0.01, 0.25]

TC

w

0.35 -- Prior 60% C.I.

0.30

Specific shear viscosity posterior

Without causality analysis 60% C.L.

Norm. Pb-Pb 2.76 TeV	N[2.76 TeV]	[10, 20]	temperature of (η/s) kink (η/s) at kink
Norm. Au-Au 200 GeV	N[0.2 TeV]	[3, 10]	
generalized mean	p	[-0.7, 0.7]	low temp. slope of (η/s)
nucleon width	w	[0.5, 1.5] fm	high temp. slope of (η/s)
min. dist. btw. nucleons	d ³ min	[0, 1.7 ³] fm ³	shear relaxation time factor
multiplicity fluctuation	^σ k	[0.3, 2.0]	maximum of (ζ / s)
free-streaming time scale	^τ B	[0.3, 2.0] fm/ <i>c</i>	temperature of (ζ / s) peak
free-streaming energy dep.	α	[–0.3, 0.3]	width of (ζ/s) peak
particlization temperature	T _{SW}	[0.135, 0.165] GeV	asymmetry of (ζ/s) peak

[0.12, 0.3] GeV

[0.025, 0.15] GeV [-0.8, 0.8]

- Bayesian inference: used to extract physical properties from data with systematic treatment of uncertainty
- JETSCAPE performed large-scale analysis of soft sector *Phys.Rev.C* 103 (2021) 5, 054904
- How are these results affected if we don't allow hydro to be used in acausal regime?

Norm. Au-Au 200 GeV $N[0.2 \text{ TeV}]$ [3, 10] (η/s) at kink	∋ of (1
	e of (1
generalized mean p [-0.7, 0.7] low temp. slope	· · · ·
nucleon width w [0.5, 1.5] fm high temp. slope	be of (
min. dist. btw. nucleons d ³ _{min} [0, 1.7 ³] fm ³ shear relaxation	n time
multiplicity fluctuation σ_k [0.3, 2.0] maximum of (ζ)	;/s)
free-streaming time scale τ_R^{-1} [0.3, 2.0] fm/c temperature of ((ζ/s
free-streaming energy dep. α [-0.3, 0.3] width of (ζ /s) p	peak
particlization temperature T _{SW} [0.135, 0.165] GeV asymmetry of (4	ζ/s

-

• • • •

- Bayesian inference: used to extract physical properties from data with systematic treatment of uncertainty
- JETSCAPE performed large-scale analysis of soft sector *Phys.Rev.C* 103 (2021) 5, 054904
- How are these results affected if we don't allow hydro to be used in acausal regime?

Norm. Pb-Pb 2.76 TeV Norm. Au-Au 200 GeV generalized mean	N[2.76 TeV] N[0.2 TeV]	[10, 20] [3, 10] [-0.7, 0.7]	temperature of (η/s) (η/s) at kink low temp. slope of (η/s)
nucleon width	w	[0.5, 1.5] fm	high temp. slope of (
min. dist. btw. nucleons multiplicity fluctuation free-streaming time scale free-streaming energy dep. particlization temperature	a_{min}^{3} σ_{k} τ_{R} $lpha$ T_{sw}	[0, 1.7 ³] fm ³ [0.3, 2.0] [0.3, 2.0] fm/ <i>c</i> [-0.3, 0.3] [0.135, 0.165] GeV	shear relaxation time maximum of (ζ/s) temperature of (ζ/s) width of (ζ/s) peak asymmetry of (ζ/s)

nac

ISRAEL-STEWART HYDRODYNAMICS

• Modern hydrodynamic theory used in simulations:

$$T^{\mu\nu} = \epsilon u^{\mu} u^{\nu} - (P + \Pi) \Delta^{\mu\nu} + \pi^{\mu\nu}$$

$$\partial_{\mu} T^{\mu\nu} = \mathbf{0},$$

$$\tau_{\Pi} \dot{\Pi} + \Pi = -\zeta \theta - \delta_{\Pi\Pi} \Pi \theta + \lambda_{\Pi\pi} \pi^{\mu\nu} \sigma_{\mu\nu}$$

$$\tau_{\pi} \dot{\pi}^{\langle\mu\nu\rangle} + \pi^{\mu\nu} = \mathbf{2}\eta \sigma^{\mu\nu} - \delta_{\pi\pi} \pi^{\mu\nu} \theta + \varphi_{7} \pi^{\langle\mu}_{\alpha} \pi^{\nu\rangle\alpha} - \tau_{\pi\pi} \pi^{\langle\mu}_{\alpha} \sigma^{\nu\rangle\alpha} + \lambda_{\pi\Pi} \Pi \sigma^{\mu\nu}$$

• Common parameterizations:

$$\tau_{\Pi} = b_{\Pi} \frac{\zeta}{\left(\frac{1}{3} - c_s^2\right)^2 (\epsilon + p)}$$
$$\tau_{\pi} = b_{\pi} \frac{\eta}{sT}$$

$$\frac{\delta_{\Pi\Pi}}{\tau_{\Pi}} = \frac{2}{3}$$
$$\frac{\delta_{\pi\pi}}{\tau_{\pi}} = \frac{4}{3}$$
$$\frac{\tau_{\pi\pi}}{\tau_{\pi}} = \frac{10}{7}$$

$$egin{aligned} &rac{\lambda_{\pi\Pi}}{ au_{\pi}}=rac{6}{5}\ &rac{\lambda_{\Pi\pi}}{ au_{\Pi}}=rac{8}{5}\left(rac{1}{3}-c_{s}^{2}
ight) \end{aligned}$$

ISRAEL-STEWART HYDRODYNAMICS

• Modern hydrodynamic theory used in simulations:

$$T^{\mu\nu} = \epsilon u^{\mu} u^{\nu} - (P + \Pi) \Delta^{\mu\nu} + \pi^{\mu\nu}$$

$$\partial_{\mu} T^{\mu\nu} = \mathbf{0},$$

$$\tau_{\Pi} \dot{\Pi} + \Pi = -\zeta \theta - \delta_{\Pi\Pi} \Pi \theta + \lambda_{\Pi\pi} \pi^{\mu\nu} \sigma_{\mu\nu}$$

$$\tau_{\pi} \dot{\pi}^{\langle\mu\nu\rangle} + \pi^{\mu\nu} = 2\eta \sigma^{\mu\nu} - \delta_{\pi\pi} \pi^{\mu\nu} \theta + \varphi_{7} \pi^{\langle\mu}_{\alpha} \pi^{\nu\rangle\alpha} - \tau_{\pi\pi} \pi^{\langle\mu}_{\alpha} \sigma^{\nu\rangle\alpha} + \lambda_{\pi\Pi} \Pi \sigma^{\mu\nu}$$

• Common parameterizations:

$$egin{split} & au_{\Pi} = b_{\Pi} rac{\zeta}{\left(rac{1}{3} - c_{s}^{2}
ight)^{2}\left(\epsilon + p
ight)} \ & au_{\pi} = b_{\pi} rac{\eta}{sT} \end{split}$$

$$\frac{\delta_{\Pi\Pi}}{\tau_{\Pi}} = \frac{2}{3}$$
$$\frac{\delta_{\pi\pi}}{\tau_{\pi}} = \frac{4}{3}$$
$$\frac{\tau_{\pi\pi}}{\tau_{\pi}} = \frac{10}{7}$$

$$\begin{aligned} \frac{\lambda_{\pi\Pi}}{\tau_{\pi}} &= \frac{6}{5} \\ \frac{\lambda_{\Pi\pi}}{\tau_{\Pi}} &= \frac{8}{5} \left(\frac{1}{3} - c_s^2 \right) \end{aligned}$$

- Simplest situation: infinitessimal perturbation around static global equilibrium
- Linearize equations of motion. Demanding signal propagation *v* < *c* gives condition

- Prior (and posterior) allows violation of linear causality!
- Small dependence of observables on τ_π and τ_Π gives flat posterior and no strong effect on conclusions about other parameters

- Simplest situation: infinitessimal perturbation around static global equilibrium
- Linearize equations of motion. Demanding signal propagation *v* < *c* gives condition

- Prior (and posterior) allows violation of linear causality!
- Small dependence of observables on τ_π and τ_Π gives flat posterior and no strong effect on conclusions about other parameters

200

- Simplest situation: infinitessimal perturbation around static global equilibrium
- Linearize equations of motion. Demanding signal propagation *v* < *c* gives condition

- Prior (and posterior) allows violation of linear causality!
- Small dependence of observables on τ_π and τ_Π gives flat posterior and no strong effect on conclusions about other parameters

200

- Simplest situation: infinitessimal perturbation around static global equilibrium
- Linearize equations of motion. Demanding signal propagation *v* < *c* gives condition

- Prior (and posterior) allows violation of linear causality!
- Small dependence of observables on τ_π and τ_Π gives flat posterior and no strong effect on conclusions about other parameters

• Recently-derived (necessary) conditions for general, nonlinear case: *Phys. Rev. Lett. 126, 222301 (2021)*

$$n_1 \equiv rac{2}{b_\pi} + rac{\lambda_\pi \Pi}{ au_\pi} rac{\Pi}{arepsilon + P} - rac{ au_\pi \pi}{2 au_\pi} rac{|\Lambda_1|}{arepsilon + P} \ge 0,$$

$$n_2\equiv 1-rac{1}{b_\pi}+\left(1-rac{\lambda_{\pi\Pi}}{2 au_\pi}
ight)rac{\Pi}{arepsilon+eta}-rac{ au_{\pi\pi}}{4 au_\pi}rac{\Lambda_3}{arepsilon+eta}\geq 0, \ \geq 0,$$

$$n_3\equiv rac{1}{b_\pi}+rac{\lambda_{\pi\Pi}}{2 au_\pi}rac{\Pi}{arepsilon+P}-rac{ au_{\pi\pi}}{4 au_\pi}rac{\Lambda_3}{arepsilon+P} \ge 0,$$

$$n_4 \equiv 1 - rac{1}{b_\pi} + \left(1 - rac{\lambda_{\pi\Pi}}{2 au_\pi}
ight) rac{\Pi}{arepsilon + P} + \left(1 - rac{ au_{\pi\pi}}{4 au_\pi}
ight) rac{\Lambda_a}{arepsilon + P} - rac{ au_{\pi\pi}}{4 au_\pi} rac{\Lambda_d}{arepsilon + P} \ge 0,$$

$$n_5 \equiv c_s^2 + \frac{4}{3} \frac{1}{b_\pi} + b_\Pi \left(\frac{1}{3} - c_s^2\right)^2 + \left(\frac{2}{3} \frac{\lambda_{\pi\Pi}}{\tau_\pi} + \frac{\delta_{\Pi\Pi}}{\tau_\Pi} + c_s^2\right) \frac{\Pi}{\varepsilon + P} \left(\frac{3\delta_{\pi\pi} + \tau_{\pi\pi}}{3\tau_\pi} + \frac{\lambda_{\Pi\pi}}{\tau_\Pi} + c_s^2\right) \frac{\Lambda_1}{\varepsilon + P} \ge 0.$$

$$n_6 \equiv 1 - \left(c_s^2 + \frac{4}{3}\frac{1}{b_\pi} + b_\Pi \left(\frac{1}{3} - c_s^2\right)^2\right) + \left(1 - \frac{2}{3}\frac{\lambda_{\pi\Pi}}{\tau_\pi} - \frac{\delta_{\Pi\Pi}}{\tau_\Pi} - c_s^2\right)\frac{\Pi}{\varepsilon + P} + \left(1 - \frac{3\delta_{\pi\pi} + \tau_{\pi\pi}}{3\tau_\pi} - \frac{\lambda_{\Pi\pi}}{\tau_\Pi} - c_s^2\right)\frac{\Lambda_3}{\varepsilon + P} \ge 0.$$

• In practice, *n*₆ is the most stringent condition

QUANTIFYING ACAUSALITY

- We perform a *b* = 0 simulation and quantify the fraction of system (defined by totel energy) that is in an acausal regime at onset of hydrodynamics
- What happens if we make cuts on the posterior?

QUANTIFYING ACAUSALITY

- We perform a b = 0 simulation and quantify the fraction of system (defined by totel energy) that is in an acausal regime at onset of hydrodynamics
- What happens if we make cuts on the posterior?

OBSERVABLES (MAP WITH AND WITHOUT ACAUSALITY CUTS)

MATTHEW LUZUM (USP)

500

OBSERVABLES (MAP WITH AND WITHOUT ACAUSALITY CUTS)

MATTHEW LUZUM (USP)

HOT JETS 01/09/2025 8/13

- Ability to fit data not destroyed by stringent causality demands
- $\bullet\,$ Maximum probability (Maximum a Posteriori, MAP) of original posterior is \sim 3 times as likely as best-fit after the strongest cut

• Demanding causality alters posteriors

 Demanding causality alters posteriors

1D PARAMETER POSTERIORS

- 1D marginalized posterior distributions
- Demanding causality alters posteriors

VISCOSITY POSTERIORS

- Shear viscosity not signifantly affected
- Large bulk viscosity disfavored by causality cuts

VISCOSITY POSTERIORS

- Hydodynamic simulations typically enter acausal regimes, at least sometimes
- Demanding limits on acauasality has nonnegligible effects on existing Bayesian analyses
- In the era of precision heavy-ion physics, it is an issue that should be addressed
 - Improve pre-hydrodynamic description
 - Further developments in hydrodynamic theory

nar

BONUS: JET/MEDIUM INTERACTION

- Early times: system is far from equilibrium and must thermalize/hydrodynamize
- Same considerations near jets: energy lost by the jet must thermalize/hydrodynamize
- May have observable affects?

MATTHEW LUZUM (USP)

EXTRA SLIDES

MATTHEW LUZUM (USP)

HOT JETS 01/09/2025 14/13

Ξ.

イロト イヨト イヨト イヨト

5990

HOT JETS 01/09/2025 15/13

HOT JETS 01/09/2025 16/13

э

DQC

æ

590

- 1D marginalized posterior distributions
- Demanding causality alters posteriors

1D PARAMETER POSTERIORS

- 1D marginalized posterior distributions
- Demanding causality alters
 posteriors

- 1D marginalized posterior distributions
- Demanding causality alters posteriors

- 1D marginalized posterior distributions
- Demanding causality alters posteriors

• • • •

1D PARAMETER POSTERIORS

- 1D marginalized posterior distributions
- Demanding causality alters posteriors

1D PARAMETER POSTERIORS

- 1D marginalized posterior distributions
- Demanding causality alters posteriors

- 1D marginalized posterior distributions
- Demanding causality alters posteriors

