South African Gravity Society Conference 2025 (SAGS2025)

Contribution ID: 54 Type: not specified

Anisotropic model in scale-dependent gravity

Friday 21 November 2025 09:15 (30 minutes)

The cosmological dynamics of a scalar-dependent gravitational model, whereby both the Newtonian coupling constant \(\(G \) \) and the cosmological constant \(\(Lambda \) \) vary as functions of cosmic time, were examined within the framework of a spatially homogeneous anisotropic Bianchi type-I cosmological model. The dimensionless variables, including the normalized Hubble parameter $h = H/H_0$, energy mass, and dark energy density Ω_m and Ω_Λ , facilitated the transformation of the modified gravitational field equations into a closed system of five first-order, coupled differential equations in redshift space, with $g = G/G_0$ and Z = dg/dz were numerically integrated using a fourth-order Runge-Kutta method, employing initial conditions that were consistent with Planck data. The model's predicted values for the deceleration parameter q(z), the effective equation of state $w_{\rm eff}(z)$, the statefinder parameters r(z) and s(z), and the Om(z) diagnostic were juxtaposed with those derived from the concordance Λ CDM model. The study indicates that, within this scenario, the universe has transitioned from a decelerating phase in the past to an accelerating phase currently, with $w_{\rm eff}$ approaching -1 at low redshifts. The statefinder and Om diagnostics confirm that the scalar-dependent gravity model closely approximates Λ CDM in late epochs, permitting slight deviations that indicate fluctuations in G and Λ . The findings suggest that scale-dependent gravitational couplings in anisotropic backgrounds may provide a coherent and convincing alternative explanation for the late-time acceleration of the universe.

Authors: Dr ALFEDEEL, ALNADHIEF; ALFEDEEL, Alnadhief

Presenter: ALFEDEEL, Alnadhief