South African Gravity Society Conference 2025 (SAGS2025)

Contribution ID: 7 Type: not specified

On perturbation induced minimal geometric decoupling in spacetime and its implications for mass-gap stability

Friday 21 November 2025 14:30 (20 minutes)

This study examines mass-gap compact stars formed from neutron star mergers or massive pulsar evolution within the minimal geometric deformation framework. Using a Buchdahl-Vaidya-Tikekar-type metric, we obtain unperturbed static, spherically symmetric solutions with central densities $\sim 10^{15}\,\mathrm{g/cm^3}$ decreasing to zero at radius R. Astrophysical effects such as gravitational radiation or accretion are modeled through a perturbation $q(r) = \sin(\omega r^2)$ with amplitude α and frequency ω . Instead of a fixed EOS, we use a metric ansatz for g_{rr} that generates pressure–density profiles directly. Observational limits from PSR J1614–2230 $(1.97^{+0.0}_{-0.04}M_{\odot})$, PSR J0952–0607 ($\approx 2.35M_{\odot}$), GW190814, and GW200210 ($M > 2M_{\odot}$), plus the radius $13.70^{+2.6}_{-1.5}$ km for PSR J0740+6620, guide the model space. For α rising from 0 to 0.005, the EOS changes from linear to nonlinear, while varying ω up to $0.06\,\mathrm{km}^{-2}$ at fixed $\alpha=0.001$ produces minor changes. Without perturbations ($\alpha=0,\omega=0$), the M–R curve is smooth, peaking at $M_{\rm max}\approx 3.5\,M_{\odot}$ and $R\approx 12\,{\rm km}$. For $\alpha=0.001$ and $\omega=0.015\,\mathrm{km}^{-2}$, radius fluctuations of $\delta R\approx0.17\,\mathrm{km}$ occur near $M\approx2.7\,M_{\odot}$, $R \approx 13.3 \, \mathrm{km}$. Higher α yields stronger oscillations, with $M > 3.5 \, M_{\odot}$ and $R > 12 \, \mathrm{km}$. Perturbations soften the EOS, lowering $M_{
m max}$ and limiting collapse to black holes. All cases satisfy the Buchdahl bound $\frac{2M}{R}<\frac{8}{9}$, match massive pulsar data, and remain dynamically stable: sound speeds stay subluminal, Γ exceeds the critical value, and anisotropy grows mainly with α . The frequency ω has smaller influence, causing slight radius oscillations without destabilizing the star.

Author: ERREHYMY, Abdelghani (University of KwaZulu-Natal)

Presenter: ERREHYMY, Abdelghani (University of KwaZulu-Natal)