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INTRODUCTION

After the Higgs boson discovery, the focus shifted toward

understanding its couplings to other particles, in
particular to the fermions.

= Exploring CP nature of the Higgs couplings has become
very important.

The Yukawa coupling of h to the 3" generation fermions is larger.

Therefore, studying of CP properties with them play an important role.




INTRODUCTION

= To check the consistency of the SM and beyond.
= Extensive studies have been performed over the years to assess the feasibility of this measurement.

= Nevertheless, the observation of the H — bb decay remains very challenging at the LHC.

ecently, there nas been a consiaeration 1or nign energy ep collisions . @I IeD
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A rich physics program Very exciting prospects Direct extraction of y,,



INTRODUCTION

= Tentative schedule for Hﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ
the LHeC project. -
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INTRODUCTION

[ Future Circular Collider

B Large Hadron Collider(LHC)
Large Electron-Positron Collider (LEP)

= Other ep colliders more than LHeC at CERN:
W Tevatroﬁ

= Benchmarks: |E,. = 60 GeV Eriefgy: 2 Telop)

Unit LHeC HE-LHeC FCC-eh FCC-eh

E, TeV T 13.5 20 50
vs TeV 1.30 1.77 2.2 3.46




INTRODUCTION

= Higgs Production at ep collision:

= VBF processes:

= Leading order SM diagrams for CC (NC) processes:
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the production rate of CC is larger than

NC process by about a factor of 4 — 6
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THEORETICAL FRAMEWORK

= The effective Lagrangian for mass and Yukawa terms: x99

2 Xf +?Xf Y 3v? Xf +3X-r
£; =21 +t Fofe+ 2L [1+ = frfrh
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v f f 1 f v T
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= A:the energy scale of new physics
= )y, :Yukawa coupling for the relevant fermion

= Xz, :Real and Imaginary part of coefficients of the dimension-six terms.


https://arxiv.org/abs/hep-ph/9909265

DATA SIMULATION
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= Two different signal samples = Two | and R coefficients 1o

= Dimension-six operator coefficients X;, =0.1, with A =1 TeV.
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DATA SIMULATION

LHeC & FCC-eh benchmarks (TeV)

Signal process:

Background processes:

Integrated luminosity
(ab™")

e p — Hjv., where H — bb in the effective Lagrangian
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DATA SIMULATION




ANALYSIS STRATEGY

Event selection (preselection cuts)

= Exactly 2 b-tagged jet

= At least 3 jets (Including 1 forward jet)
J

\

= P;>20GeV for all jets
= |n| < 2.5 for b-tagged jets
= AR > 0.5 GeV for all objects

= —5 < np<1forforward jet

J

To enhance the sensitivity, we perform
a multivariate analysis (MVA)

Normalized distribution
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Pseudorapidity of the forward jet in ep collision
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ANALYSIS STRATEGY
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ANALYSIS STRATEGY

=  MVA classification output:

Gradient Boosted Decision Tree

Normalized distribution
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RESULTS

= The coefficients bounds for the center of mass energies of 1.3 and 3.46 TeV with the corresponding

integrated luminosities at 95% CL.

Coefficient | 1.3 TeV, 1 ab- ! | 3.46 TeV, 1 ab- ! | 3.46 TeV, 2 ab ! | 3.46 TeV, 10 ab !
X% [—0.004,0.542] | [—0.004,0.533] | [—0.003,0.532] [—0.001, 0.530]
X? [—0.103,0.022] | [-0.004,0.022] | [—0.088,0.016] [—0.080, 0.008]

= Upper limits on X? is about one order of magnitude stronger, and on X% is comparable with recent

result in: 2rXiv:2003.00099



https://arxiv.org/abs/2003.00099

CONCLUSION

After the Higgs boson discovery, the focus shifted toward understanding its couplings to other
particles, in particular to the fermions. CP violation in the Higgs sector impact on baryogensis

The Yukawa coupling of h to the 3rd generation fermions is larger.

A crucial aspect is the measurement of the b-quarkYukawa coupling, and the observation of
the H — bb decay remains very challenging at the LHC.

Recently, there has been a consideration for high energy ep collisions with very exiting
prospects.

Effective Lagrangian with dimension-six operators is used to constrain b Yukawa coupling.
Data simulation for the LHeC and FCC-eh benchmarks.
A MVA approach with BDTG method is applied to suppress the background contributions.

Limits at 95% CL on the coupling coefficients have been obtained for two center-of-mass
energies of the LHeC and FCC-eh.

We show that the MVA increases the sensitivity to the b-quarkYukawa couplings.
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