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Fast forward to 2012



what’s next?

what more do we need to explore?
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•Data driven:
• DM
• Neutrino masses
• Matter vs antimatter asymmetry
• Dark energy
• …

•Theory driven:
• The hierarchy problem and naturalness
• The flavour problem (origin of fermion families, mass/mixing 

pattern)
• Quantum gravity
• Origin of inflation
• …

The open questions in HEP
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Where does this come from?

V(H) = – μ2 |H|2 + λ |H|4

We have no guarantees as to where answers to these questions will come 
from, and what are the experiments that will eventually answer them. 

But there is one question that can only be addressed by colliders, 
and future collider efforts must focus on its thorough exploration



•The search for the origin of the Higgs and EW symmetry breaking is 
justified independently of prejudice on the relevance of theoretical 
puzzles like the hierarchy problem 

• It is reasonable to expect that the dynamics underlying the Higgs 
phenomenon sits nearby the EW scale, justifying the yet unfulfilled hope 
that new physics should be seen by LHC…

• .. thus many theoretical ideas are emerging, postponing to much higher 
energies or to alternative scenarios the framework to understand the 
origin of the weak scale

•The detailed experimental investigation of Higgs properties remains 
nevertheless a sine qua non condition to make progress no matter what 
is our bias
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The importance of the in-depth exploration of the Higgs 
properties was acknowledged by the 2020 update of the 

European Strategy for Particle Physics:

“An electron-positron Higgs factory is the 
highest-priority next collider” 
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• The precision measurement of Higgs properties must be a guaranteed 
deliverable of all future colliders

• Whether the measurements will challenge or confirm the SM properties, these 
measurements are a key ingredient in exploration of physics beyond the SM. 

• Should they show deviations from the SM, the hint to BSM will be explicit, and 
the correlations among the various deviations will guide the interpretation of 
their origin

• Should they agree with the SM, the more accurate the measurements, the 
more constraining their power in identifying the microscopic origin of possible 
BSM effects observed in other parts of the programme

• The LEP precision measurements are still today an essential constraint in 
evaluating BSM models proposed whenever some anomaly is detected in 
the data



• Is the Higgs the only (fundamental?) scalar field, or are there other Higgs-
like states (e.g. H±, A0, H±±, ... , EW-singlets, ....) ?

• Do all SM families get their mass from the same Higgs field?

• Do I3=1/2 fermions (up-type quarks) get their mass from the same Higgs 
field as I3=–1/2 fermions (down-type quarks and charged leptons)?

• Do Higgs couplings conserve flavour? H→μτ? H→eτ? t→Hc?

• Is there a deep reason for the apparent metastability of the Higgs vacuum?

• Is there a relation among Higgs/EWSB, baryogenesis, Dark Matter, inflation? 

• What happens at the EW phase transition (PT) during the Big Bang?

• what’s the order of the phase transition?

• are the conditions realized to allow EW baryogenesis? 

Other important open issues 
on the Higgs sector
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➡ the Higgs discovery does not close the book, it opens a whole new 
chapter of exploration, based on precise measurements of its 
properties, which can only rely on a future generation of colliders



• Is the mass scale beyond the LHC reach ?

• Is the mass scale within LHC’s reach, but final states are 
elusive to the direct search ?

Key question for the future developments of HEP: 
Why don’t we see the new physics we expected to 

be present around the TeV scale ?

These two scenarios are a priori equally likely, but they impact in 
different ways the future of HEP, and thus the assessment of the physics 
potential of possible future facilities

Readiness to address both scenarios is the best hedge for the field:
• precision  ⇒ higher statistics, better detectors and experimental conditions

• sensitivity (to elusive signatures) ⇒ ditto

•extended energy/mass reach ⇒ higher energy



From ESPP 2020: 

“Europe, together with its international partners, should investigate the 
technical and financial feasibility of a future hadron collider at CERN 

with a centre-of-mass energy of at least 100 TeV and with an electron-
positron Higgs and electroweak factory as a possible first stage. “



http://cern.ch/fcc
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Answer to these challenges: Future Circular Collider

• FCC-ee: e+e– @ 91, 160, 240, 365 GeV
• FCC-hh: pp @ 100 TeV
• FCC-eh: e60GeV p50TeV @ 3.5 TeV

100km tunnel
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• Guaranteed deliverables:
• study of Higgs and top quark properties, and exploration of EWSB 

phenomena, with the best possible precision and sensitivity

• Exploration potential:
• exploit both direct (large Q2) and indirect (precision) probes
• enhanced mass reach for direct exploration at 100 TeV

• E.g. match the mass scales for new physics that could be exposed via 
indirect precision measurements in the EW and Higgs sector

• Provide firm Yes/No answers to questions like:
• is there a TeV-scale solution to the hierarchy problem? 
• is DM a thermal WIMP?
• could the cosmological EW phase transition have been 1st order?
• could baryogenesis have taken place during the EW phase 

transition?
• could neutrino masses have their origin at the TeV scale?
• …

What the future circular collider can offer



Event rates: examples
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FCC-ee H Z W t τ(←Z) b(←Z) c(←Z)

106 5 1012 108 106 3 1011 1.5 1012 1012

FCC-hh H b t W(←t) τ(←W←t)

2.5 1010 1017 1012 1012 1011

FCC-eh H t

2.5 106 2 107



(1)guaranteed deliverables: Higgs properties
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Coupling deviations for various BSM models, likely to remain unconstrained by direct searches at HL-LHC

https://arxiv.org/pdf/1708.08912.pdf

> 10%

5 – 10 % NB: when the b coupling is modified, BR deviations are 
smaller than the square of the coupling deviation. Eg in 
model 5, the BR to b, c, tau, mu are practically SM-like

(sub)-% precision must be the goal to ensure 3-5σ evidence of deviations, 
and to cross-correlate coupling deviations across different channels

https://arxiv.org/pdf/1708.08912.pdf


The absolutely unique power of e+e– →ZH (circular or linear): 
• the model independent absolute measurement of HZZ 

coupling, which allows the subsequent:
• sub-% measurement of couplings to W, Z, b, τ
• % measurement of couplings to gluon and charm

p(H) = p(e–e+) – p(Z)

=> [ p(e–e+) – p(Z) ]2 peaks at m2(H) 

reconstruct Higgs events independently of the 
Higgs decay mode!

N(ZH) ∝	σ(ZH) ∝	gHZZ2

N(ZH[→ZZ]) ∝		
σ(ZH) x BR(H→ZZ) ∝		
gHZZ2 x gHZZ2 / Γ(H)

=> absolute measurement 
of width and couplings

mrecoil = √ [ p(e–e+) – p(Z) ]2



The absolutely unique power of pp →H+X: 

• the extraordinary statistics that, complemented by the per-mille e+e– 
measurement of eg BR(H→ZZ*), allows 
• the sub-% measurement of rarer decay modes
• the ≲5% measurement of the Higgs trilinear selfcoupling

• the huge dynamic range (eg pt(H) up to several TeV), which allows to 
• probe d>4 EFT operators up to scales of several TeV
• search for multi-TeV resonances decaying to H, or extensions of the 

Higgs sector

N100 = σ100 TeV × 30 ab–1

N14 = σ14 TeV × 3 ab–1

gg→H VBF WH ZH ttH HH

N100 24 x 109 2.1 x 109 4.6 x 108 3.3 x 108 9.6 x 108 3.6 x 107

N100/N14 180 170 100 110 530 390



• Hierarchy of production channels changes at large pT(H):

• σ(ttH) > σ(gg→H) above 800 GeV

• σ(VBF) > σ(gg→H) above 1800 GeV

H at large pT
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• Inclusive production, pT > 0 :
• largest overall rates
•most challenging experimentally:

• triggers, backgrounds, pile-up ⇒ low efficiency, large systematics

➡ det simulations challenging, likely unreliable ⇒ regime not studied so far

• pT ≳ 100 GeV :

• stat uncertainty ~few × 10–3 for H→4l, γγ, …
• improved S/B, realistic trigger thresholds, reduced pile-up effects ?
➡ current det sim and HL-LHC extrapolations more robust
➡ focus of FCC CDR Higgs studies so far 
➡ sweet-spot for precision measurements at the sub-% level

• pT ≳ TeV :

• stat uncertainty O(10%) up to 1.5 TeV (3 TeV) for H→4l, γγ (H→bb)
• new opportunities for reduction of syst uncertainties (TH and EXP)
• different hierarchy of production processes
• indirect sensitivity to BSM effects at large Q2 , complementary to that 

emerging from precision studies (eg decay BRs) at Q~mH
22

Three kinematic regimes



• At LHC, S/B in the H→γγ channel is O( few % )
• At FCC, for pT(H)>300 GeV, S/B~1
• Potentially accurate probe of the H pt spectrum 

up to large pt 

gg→H→γγ at large pT
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pT,min 
(GeV) δstat

100 0.2%
400 0.5%

600 1%

1600 10%
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Normalize to BR(4l) from ee => 
sub-% precision for absolute 
couplings

Future work: explore in more depth 
data-based techniques, to validate and 
then reduce the systematics in these ratio 
measurements, possibly moving to lower 
pt’s and higher stat



HL-LHC FCC-ee FCC-hh
δΓH / ΓH (%) SM 1.3 tbd
δgHZZ / gHZZ (%) 1.5 0.17 tbd
δgHWW / gHWW (%) 1.7 0.43 tbd
δgHbb / gHbb (%) 3.7 0.61 tbd
δgHcc / gHcc (%) ~70 1.21 tbd
δgHgg / gHgg (%) 2.5 (gg->H) 1.01 tbd
δgHττ / gHττ (%) 1.9 0.74 tbd
δgHμμ / gHμμ (%) 4.3 9.0 0.65 (*)
δgHγγ / gHγγ (%) 1.8 3.9 0.4 (*)
δgHtt / gHtt (%) 3.4 ~10 (indirect) 0.95 (**)
δgHZγ / gHZγ (%) 9.8 – 0.9 (*)
δgHHH / gHHH (%) 50 ~44 (indirect) 5

BRexo (95%CL) BRinv < 2.5% < 1% BRinv < 0.025%
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Higgs couplings after FCC-ee / hh

* From BR ratios wrt B(H→ZZ*) @ FCC-ee
** From pp→ttH / pp→ttZ, using B(H→bb) and ttZ EW coupling @ FCC-ee

NB 
BR(H→Zγ,γγ) ~O(10–3) ⇒ O(107) evts for Δstat~%
BR(H→μμ) ~O(10–4) ⇒ O(108) evts for Δstat~%

pp collider is essential to beat the % 
target, since no proposed ee collider 
can produce more than O(106) H’s



(2)Direct discovery reach at high mass: the 
power of 100 TeV
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7

@14 TeV

@100 TeV

Good rule of thumb to estimate FCC discovery reach 
at high mass: scale up by ~6x the LHC potential…

Explicitly verified in many examples, which helped 
setting detector performance targets
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s-channel resonances

FCC-hh reach ~ 6 x HL-LHC reach
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Constraints on the coefficients of various EFT op’s from a global fit of (i) EW observables, (ii) Higgs couplings and (iii) EW+Higgs 
combined. Darker shades of each color indicate the results neglecting all SM theory uncertainties. 

Global EFT fits to EW and H observables at FCC-ee

100 TeV is the appropriate CoM energy to directly search for new physics appearing 
indirectly through precision EW and H measurements at the future ee collider



Early phenomenology studies
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SUSY reach at 100 TeV

New detector performance studies



(3)The potential for yes/no answers to 
important questions



WIMP DM theoretical constraints
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For particles held in equilibrium by pair creation 
and annihilation processes, (χ χ ↔ SM) 

For a particle annihilating through processes 
which do not involve any larger mass scales:

Mwimp ≲ 2 TeV ( g
0.3 )

2
Ωwimp h2 ≲ 0.12



Disappearing charged track analyses (at ~full pileup)
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Higgsino

K. Terashi, R. Sawada, M. Saito, and S. Asai, Search for WIMPs with disappearing track 
signatures at the FCC-hh, (Oct, 2018) . https://cds.cern.ch/record/2642474.

=> coverage beyond the upper limit of the thermal 
WIMP mass range for both higgsinos and winos !! Mwimp ≲ 2 TeV ( g

0.3 )
2

DM WIMP searches in the most elusive, compressed scenarios:



Not covered

• Countless studies of discovery potential for multiple BSM scenarios, from 
SUSY to heavy neutrinos, from very low masses to very high masses, LLPs, 
DM, etcetcetc, at FCC-ee, FCC-hh and FCC-eh

• Sensitivity studies to SM deviations in the properties of top quarks, flavour 
physics in Z decays: huge event rates offer unique opportunities, that cannot 
be matched elsewhere

• …

• Operations with heavy ions: new domains open up at 100 TeV in the study of 
high-T/high-density QCD. Broaden the targets, the deliverables, extend the 
base of potential users, and increase the support beyond the energy frontier 
community
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Final remarks

• The study of the SM will not be complete until we clarify the nature of the 
Higgs mechanism and exhaust the exploration of phenomena at the TeV scale: 
many aspects are still obscure, many questions are still open.

• The exptl program possible at a future collider facility, combining a versatile 
high-luminosity e+e– circular collider, with a follow-up pp collider in the 100 
TeV range, offers unmatchable breadth and diversity: concrete, compelling and 
indispensable Higgs & SM measurements enrich a unique direct & indirect 
discovery potential 

• The unique feature of a circular ee + pp collider is the possibility to match 
the indirect high-mass-scale sensitivity of precision measurements to the 
direct search potential at large mass 

• The next 5-6 years, before the next review of the European Strategy for 
Particle Physics, will be critical to reach the scientific consensus and political 
support required to move forward
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Additional material: 
recent reports on Future Circular Colliders
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• FCC CDR:
• Vol.1: Physics Opportunities (CERN-ACC-2018-0056) http://cern.ch/go/Nqx7
• Vol.2: The Lepton Machine (CERN-ACC-2018-0057) http://cern.ch/go/7DH9
• Vol.3: The Hadron Machine (CERN-ACC-2018-0058), http://cern.ch/go/Xrg6
• Vol.4: High-Energy LHC (CERN-ACC-2018-0059) http://cern.ch/go/S9Gq

• "Physics at 100 TeV", CERN Yellow Report: https://arxiv.org/abs/1710.06353

• CEPC CDR: Physics and Detectors

http://cern.ch/go/Nqx7
http://cern.ch/go/7DH9
http://cern.ch/go/Xrg6
http://cern.ch/go/S9Gq
https://arxiv.org/abs/1710.06353
http://cepc.ihep.ac.cn/CEPC_CDR_Vol2_Physics-Detector.pdf

