The Particle Physics Side of **BDM**

Jong-Chul Park

N-Body Simulations with Two-Component DM February 13 (2024)

- * Dark Matter? Dark Sector?
- ***** Boosted Dark Matter (BDM) & Its Searches
- ***** Issues in BDM Searches
- ***** Cosmological Effects
- ***** Summary

Dark Matter? Dark Sector?

Message from Cosmology: Dark Matter (DM)

Minimal DM

Minimal Dark Matter

[hep-ph/0512090]

Marco Cirelli^a, Nicolao Fornengo^b, Alessandro Strumia^c.

 $\mathscr{L} = \mathscr{L}_{\rm SM} + c \begin{cases} \bar{\mathcal{X}}(i\mathcal{D} + M)\mathcal{X} & \text{when } \mathcal{X} \text{ is a spin } 1/2 \text{ fermionic multiplet} \\ |D_{\mu}\mathcal{X}|^2 - M^2 |\mathcal{X}|^2 & \text{when } \mathcal{X} \text{ is a spin } 0 \text{ bosonic multiplet} \end{cases}$ $\mathcal{X} \text{ is an } n\text{-tuplet of the } \mathrm{SU}(2)_{\mathrm{L}} \text{ gauge group, with } n = \{1, 2, 3, 4, 5, \ldots\}$

The minimal model of fermionic dark matter [hep-ph/0611069]

Yeong Gyun Kim, Kang Young Lee

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{\mathrm{DM}} + \mathcal{L}_{\mathrm{int}}$$

$$\mathcal{L}_{\rm DM} = \bar{\psi} \, i\gamma^{\mu} \partial_{\mu} \psi - m_0 \bar{\psi} \psi \qquad \qquad \mathcal{L}_{\rm int} = -\frac{1}{\Lambda} H^{\dagger} H \bar{\psi} \psi$$

Secluded DM

Secluded WIMP Dark Matter

[0711.4866]

Maxim Pospelov^(a,b), Adam Ritz^(a) and Mikhail Voloshin^(c,d)

$$\mathcal{L}_{\text{WIMP+mediator}} = -\frac{1}{4} V_{\mu\nu}^2 - \frac{\kappa}{2} V_{\mu\nu} B_{\mu\nu} - |D_{\mu}\phi|^2 - U(\phi\phi^*) + \bar{\psi}(iD_{\mu}\gamma_{\mu} - m_{\psi})\psi.$$

Secluded DM

Galactic 511 keV line from MeV millicharged dark matter

[0711.3528]

Ji-Haeng Huh, Jihn E. Kim^{*}, Jong-Chul Park[†] and Seong Chan Park[‡]

Singlet fermionic dark matter

[0803.2932]

Kang Young Lee Yeong Gyun Kim, Seodong Shin $\mathcal{L}_{hid} = \mathcal{L}_S + \mathcal{L}_{\psi} - g_S \bar{\psi} \psi S, \ \mathcal{L}_{int} = -\lambda_1 H^{\dagger} H S - \lambda_2 H^{\dagger} H S^2.$ Dark matter and a new gauge boson through kinetic mixing

Eung Jin Chun Jong-Chul Park Stefano Scopel

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{2}\sin\epsilon \hat{B}_{\mu\nu}\hat{X}^{\mu\nu} - \frac{1}{4}\hat{X}^{\mu\nu}\hat{X}_{\mu\nu} - g_X\hat{X}^\mu\bar{\psi}\gamma_\mu\psi + \frac{1}{2}m_{\hat{X}}^2\hat{X}^2 + m_\psi\bar{\psi}\psi$$

Dark Sector: Dark Particles & Portals

- ✓ Vector portal (kinetic mixing): $\frac{\sin \epsilon}{2} B_{\mu\nu} X^{\mu\nu}$
- ✓ Scalar (Higgs) portal: $\lambda_{H\phi}|H|^2|\phi|^2$
- ✓ Fermion (neutrino) portal: $\lambda_{\chi} HL\chi$
- ✓ Pseudo-scalar (axion) portal: $\frac{1}{f_{a\gamma/ag}} a F_{\mu\nu} \tilde{F}^{\mu\nu}$

$$\frac{1}{f_{af}}\partial_{\mu}a(\bar{\psi}\gamma^{\mu}\gamma^{5}\psi)$$

- ✓ Dilaton portal: $\frac{\sigma}{f} (M_V^2 V_\mu V^\mu + \dots + V_{\mu\nu} V^{\mu\nu} + \dots)$
- ✓ Gauged SM global #: B-L, L_{μ} - L_{τ} , ...
- ✓ **Dark axion** portal: $G_{a\gamma\gamma}, aF_{\mu\nu}\tilde{X}^{\mu\nu}$
- ✓ Double portal: combination of portals [Belanger, Goudelis, JCP (2013)]

- ✓ DM spin: fermion, scalar, vector
- ✓ DM species: single-/two-/multi-component
- ✓ DM mass: light, heavy, light & heavy
- ✓ DM interaction: flavor-conserving (elastic),

flavor-changing (inelastic)

√ ???

Dark Sector or Hidden Sector

Report of the Topical Group on Particle Dark Matter for Snowmass 2021

Dark Matter Mass

[2209.07426]

Various Ideas for DM

Boosted Dark Matter (BDM)

4

Dark Sector: DM Boosting Mechanisms

Boosted DM (BDM) coming from the Universe

Two-Component Scenario: Freeze-out

[Belanger, **JCP**, JCAP (2012)] [Kamada, Kim, **JCP**, Shin, JCAP (2022)]

<u>"Assisted Freeze-out"</u> Mechanism

✓ Heavier relic *χ*₂: hard to directly detect it due to tiny coupling to SM

$$\frac{dY_{\chi_2}}{dx} = -\frac{\lambda_{\chi_2}(x)}{x} \left[Y_{\chi_2}^2 - \left(\frac{Y_{\chi_2}^{eq}(x)}{Y_{\chi_1}^{eq}(x)} \right)^2 Y_{\chi_1}^2 \right],$$

$$\frac{dY_{\chi_1}}{dx} = -\frac{\lambda_{\chi_1}(x)}{x} \left[Y_{\chi_1}^2 - \left(Y_{\chi_1}^{eq}(x) \right)^2 \right] + \frac{\lambda_{\chi_0}(x)}{x} \left[Y_{\chi_2}^2 - \left(\frac{Y_{\chi_2}^{eq}(x)}{Y_{\chi_1}^{eq}(x)} \right)^2 Y_{\chi_1}^2 \right]$$

$$\frac{dY_{\chi_1}}{dx} = -\frac{\lambda_{\chi_1}(x)}{x} \left[Y_{\chi_1}^2 - \left(Y_{\chi_1}^{eq}(x) \right)^2 \right] + \frac{\lambda_{\chi_0}(x)}{x} \left[Y_{\chi_2}^2 - \left(\frac{Y_{\chi_2}^{eq}(x)}{Y_{\chi_1}^{eq}(x)} \right)^2 Y_{\chi_1}^2 \right]$$

$$\frac{dY_{\chi_1}}{dx} \simeq -\frac{\lambda_{\chi_1}(x)}{x} \left[Y_{\chi_1}^2 - \left(Y_{\chi_1}^{\text{eq}}(x) \right)^2 - Y_{\text{ast.}}^2(x) \right]$$

Two-Component Scenario: BDM Signatures

DM Boosting Mechanisms: <u>Cosmic-Rays</u> (CRs)

Cosmic-Ray-Induced BDM

- ★ Energetic cosmic-ray-induced BDM: <u>energetic cosmic-rays</u> <u>kick DM</u> (large $E_{e^{\pm},p^{\pm},\text{He},\nu,\dots}$ → large E_{χ})
 - → Efficient for Light DM

- Charged CRs: [Bringmann & Pospelov, PRL (2019); Ema et al., PRL (2019); Cappiello & Beacom, PRD (2019); Dent & Dutta et al., PRD (2020); Jho, JCP, Park & Tseng, PLB (2020); Cho et al., PRD (2020); more]
- CR ν (vBDM): [Jho, JCP, Park & Tseng,
 2101.11262; Das & Sen, 2104.00027; Chao, Li,
 Liao, 2108.05608; Lin, Wu, Wu, Wong,
 2206.06864; more]

BDM from astrophysical processes:
Solar evaporation - Kouvaris, PRD (2015)
Dark cosmic rays - Hu +, PLB (2017)
Solar reflection - An +, PRL (2018)
Solar acceleration - Emken +, PRD (2018)
Atmospheric collider - Alvey+, PRL (2019)
PBH evaporation - Calabrese +, PRD (2022)
Blazar jets - Wang +, PRL (2022)
Supernova shocks - Cappiello
more

BDM Searches @ Neutrino Experiments

Issues in BDM Searches

Minimal Two-component Scenario

- Example model: fermionic heavier(χ₂)/lighter(χ₁) DM + dark gauge boson(X)
 [G. Belanger, JCP (2011)]
- ◆ Elastic electron [Agashe, Cui, Necib, Thaler (2014)] & proton (even DIS) scattering channels are available. → Energetic recoil

Issue 1: Background

- Irreducible backgrounds: atmospheric-neutrino-induced events
- ✤ Neutral- & charged-current (even DIS) scattering channels are available. → Energetic recoil
- Good angular resolution allows to isolate source regions, especially very good for point-like sources such as the Sun & dwarf galaxies.

Issue 2: Distinction from v Scenario

- ✤ (Light) BDM behaves like a neutrino.
- Signature-wise, it is challenging to distinguish the BDM scenario from the neutrino one.

Issue 1 & 2: Avoidable by iBDM Scenario

- ✤ *i*BDM: inelastic DM+BDM [Kim, JCP & Shin, PRL (2017)]
- * Additional signatures from the decay of heavier unstable dark-sector state (or excited state)
 - χ_2 at the expense of "minimalism" of underlying BDM models.

Is it possible to have distinctive signatures in the minimal scenario?

Issue 2: Avoidable by Subleading Process

- Distinctive signatures may arise even under the minimal setup, once higher-order corrections are taken into account.
- A new BDM search strategy utilizing initial-/final-state dark gauge boson radiation, i.e.
 "Dark-Strahlung" from cosmogenic BDM [Kim, JCP & Shin, PRD (2019)]

BDM=Hot DM?

★ BDM=hot DM → Strong constraints from cosmological evolution, structure formation, etc?

$$\checkmark \chi_2 \chi_2 \rightarrow \chi_1 \chi_1 \text{ Vs } \chi \chi \rightarrow \nu \nu$$

$$> n_{\chi_1} \propto \frac{\langle \sigma v \rangle_{\chi_2 \chi_2 \to \chi_1 \chi_1}}{m_2^2} \text{ with } \langle \sigma v \rangle_{\chi_2 \chi_2 \to \chi_1 \chi_1} \sim 10^{-26} \text{ cm}^3/\text{s}$$

✓ χ_2 : heavy DM, χ_1 : light DM

Heating via Self-Scattering?

Heating via Self-Scattering?

Large self-scattering is quite natural for light dark sector! For $g_{\chi_1} \approx O(1)$

 $\&\,m\approx {\cal O}(10~{\rm MeV}),$

 $\sigma_{\chi_1}^{\text{self}} \approx \frac{g_{\chi_1}^4}{\pi} \frac{m_{\chi_1}^2}{m_{\text{med}}^4}$

→ $\sigma_{\chi_1}^{\text{self}}/m_{\chi_1} \approx \boldsymbol{O}(1 \ \text{cm}^2/\text{g})$

Thermal Evolution

 $T_{\chi_1} + 2HT_{\chi_1} \simeq \gamma_{\text{heat}}T - 2\gamma_{\chi_1\text{sm}} \left(T_{\chi_1} - T\right)$

✓ χ_2 : heavy DM, χ_1 : light DM

Cosmological Constraints & Dark Photon Searches

* Rising interest in dark sector (multiple particles) scenarios & BDM (Energetic DM)

- ***** BDM searches are promising & provide a new direction to explore dark sector physics.
- * Experimental studies have already begun, e.g. SK, COSINE-100, Panda-X, CDEX, DUNE, ...
- Effects of multi-comp. CDM: change in the thermal evolution
- The lighter DM(> MeV) can behave like WDM.
- Systematic cosmological studies are required!

Supplemental

Optimizing Future BDM Searches

Many More Well-Motivated Exps.

Dark Matter	Target	get Volume [t]		Depth	$E_{\rm th}$	Resolution			DID	Run	D-f-
Experiments	Material	Active	Fiducial	[m]	[keV]	Position [cm]	Angular [°] Energy [%]	РШ	Time	Reis.	
DarkSide	LAr	46.4	36.9	3,800	(2 (1)			< 10		9019	[119]
-50	DP-TPC	kg	kg	m.w.e.	O(1)	$\sim 0.1 - 1$	_	$\gtrsim 10$	_	2013-	[112]
DarkSide	LAr	93	20	3,800	()(1)	× 01 – 1	_	< 10	_	goal:	[70]
-20k	DP-TPC	23	20	m.w.e.	0(1)			~ 10	_	2021-	[19]
XENON1T	LXe	2.0	1.3	3,600	$\mathcal{O}(1)$	$\sim 0.1 - 1$	_	_	_	2016	[113, 114]
	DP-TPC			m.w.e.						-2018	
XENONnT	LXe	5.9	~ 4	3,600	$\mathcal{O}(1)$	$\sim 0.1 - 1$	_	_	_	goal:	[113]
	DP-TPC			m.w.e.						2020-	
DEAP	SP LAr	3.26	2.2	2,000	$\mathcal{O}(10)$	< 10	_	$\sim 10-20$	_	2016-	[99-101]
-3600	SI only										
DEAP	SP LAr	150	50	2,000	$\mathcal{O}(10)$	15	-	_	_	-	[99]
-501	51 only									. 1	
ZEPLIN	DP TPC	7	5.6	1,500	$\mathcal{O}(1)$	$\sim 0.1 - 1$	-	2.5 MeV: 2	-	goai: 2020-	[115, 116]
Noutrino	Target	Volume [kt]		Donth	<i>F</i> .		Pasalu	tion		2020-	
Experiments	Material	Active	Fiducial	[m]	[MeV]	Vertex [cm]	Angular [°]	Energy [%]	PID	Time	Refs.
Lapormone	organic		1 Iddenii	3.800	[110.1]	forten [em]	inguin []	2000185 [70]		> 5.6	
Borexino	LS	0.278 0.1	0.1	m.w.e.	~ 0.2	$\sim 9-17$	-	$\sqrt{E (MeV)}$	_	vear	[117]
KamLAND			0.2686	1,000	0.2–1	$\frac{12-13}{\sqrt{E (\text{MeV})}}$		$\frac{6.4-6.9}{\sqrt{E ({\rm MeV})}}$		~ 10	[118, 119]
	LS	1					_		_	year?	
JUNO	LS -			700	< 1, goal: 0.1	$\frac{12}{\sqrt{E (MeV)}}$	μ:	$\frac{3}{\sqrt{E (MeV)}}$	$\mu^{\pm} vs \pi^{\pm}$,	goal:	: - [120-122]
		-	- 20				L>5 m: $<1,$		e^{\pm} vs π^0 :	2021 -	
						v v /	L>1 m: <10	v v v	difficult		
DUNE	Total LArTPC 17.5 ×4			≳ 10 1500 ×4	e : 30,	$\lesssim 1-2$		$e: 20 \ (E < 0.4 {\rm GeV}),$			[77, 80–84]
		Total:						$10 \ (E < 1.0 \text{ GeV}),$ $2 + \frac{8}{\sqrt{E/\text{GeV}}} \ (E > 1.0 \text{ GeV})$	good	10 kt:	
		17.5	$\gtrsim 10$		p:		$e, \mu : 1,$		e,μ,π^{\pm},p	2026-,	
		$\times 4$	$\times 4$		21-50		$\pi^{\pm}, p, n: 5$	$p: 10 \ (E < 1.0 \text{ GeV}),$	separation	20 kt:	
								$5 + \frac{5}{\sqrt{E/GeV}}$ (E > 1.0 GeV)		2027 -	
SK	Water	Total:			e : 5,	5 MeV: 95,	10 MeV: 25,	10 MeV: 16,	e, µ:	$\gtrsim 14$	
	Cherenkov	50	22.5	1,000	p: 485	10 MeV: 55,	0.1 GeV: 3,	1 GeV: 2.5	good	year	[123 - 125]
						$20 \mathrm{MeV}$: 40	1.33 GeV: 1.2				
		Total:		Japan:		5 MeV: 75,			e, μ :		
НК	Water	258	187	650,	e:<5,	$10{\rm MeV}{:}$ 45,	similar	better	good,	goal:	[05 07]
	Cherenkov	$\times 2$	$\times 2$	Korea:	p:485	$15\mathrm{MeV}{:}$ 40,	to SK	than SK π^0 ,	π^0, π^{\pm} :	2027 -	[00-01]
						$0.5 \mathrm{GeV}: 28$			mild		
Neutrino	Target	Eff	ective	\mathbf{Depth}	$E_{\rm th}$		Resolu	tion	PID	Run	Refs.
Telescopes	Material	Volume [Mt]		[m]	[GeV]	Vertex [m]	Angular [°]	Energy [%]		Time	
IceCube	Ice	$100 \text{GeV}: \sim 30$,		1,450	~ 100	vertical: 5,	μ -track: ~ 1,	100 GeV: 28,	only	2011 -	[89, 126] 3)
	Cherenkov	$200 \text{GeV}: \sim 200$		Ice		horizontal: 15	shower: ~ 30	1 TeV: 16	μ	(2008)	
DeepCore	Ice	$10 \mathrm{Ge}$	$10 \mathrm{GeV}$: ~ 5,		~ 10	better	μ -track: ~1,	_	only	2011 -	[88, 89]
	Cherenkov	$100 \mathrm{GeV}$: ~ 30		Ice			shower: $\gtrsim 10$	μ	(2010)		
IceCube	Ice	_		2,150	$\mathcal{O}(1)$	much	$5 \text{GeV}: \sim 20$,	_	only	goal:	al: 23 [127]
Upgrade	Cherenkov		10.11.5.1			better	10 GeV: ~ 15		μ	2023	
PINGU	Ice	1 Ge	$v \ge 1$,	2,100	~ 1	much	1 GeV: 25,	1 GeV: 55,	only	>	[128, 129]
	Cherenkov	$10 \mathrm{G}$	$eV: \sim 5$	Ice	*0	better	10 GeV: 10	10 GeV: 25	μ	2023	
Gen2	Ice	~	10 Gt	1,360	~ 50	worse	μ -track: < 1	-	only	-	[130]
	Cherenkov			Ice	TeV		shower: ~ 15		μ		

[P. Machado, D. Kim, JCP & S. Shin, JHEP (2020)]

- Many existing/upcoming experiments are potentially capable of testing models conceiving BDM signals.
- * Additional physics opportunity on top of the main mission of each

experiment.

Many More Well-Motivated Exps.

[P. Machado, D. Kim, JCP & S. Shin, JHEP (2020)]

p-Scattering vs. DIS

[P. Machado, D. Kim, JCP & S. Shin, JHEP (2020)]

- ✤ If a momentum transfer is too large, a proton may break apart.
- ♦ What is large? → A SK simulation study [Fechner et al, PRD (2009)] showed about 50 % events accompany (at least) a pion or a secondary particle for $p_p \approx 2$ GeV.
- ♦ We categorize any event with $p_p < 2$ GeV as the *p*-scattering (i.e., simplified step-function-like transition).

p-Scattering vs. DIS: Numerical Study

- ✓ We study $\sigma_{\chi_1 p}^{\text{cut}} / \sigma_{\text{DIS}}$ where 200 MeV < p_p < 2 GeV is applied to $\sigma_{\chi_1 p}$ while no cuts are imposed to σ_{DIS} .
- ✓ *p*-scattering dominates over DIS for $m_X < O(GeV)$ (cf. *v* scattering via W, Z).
- ✓ As the process becomes more "inelastic", *p*-scattering dominates over DIS for a given E_1 .
- ✓ DIS-preferred region expands in increasing E_1 .

p-Scattering vs. e-Scattering

[P. Machado, D. Kim, JCP & S. Shin, JHEP (2020)]

- ✓ If a BDM search hypothesizes a heavy dark photon (say, sub-GeV range), the *p*-channel may expedite discovery.
- ✓ If a model conceiving iBDM signals allows for large mass gaps between χ_1 and χ_2 , the *p*-channel is more advantageous.
- ✓ The *e*-channel becomes comparable in probing the parameter regions with smaller m_1 and m_X .
- ✓ As the boosted χ_1 comes with more energy, more parameter space where the *e*-channel is comparable opens up.
- ✓ With cuts, more e-channel favored region.