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THERE are two different types of missing (dark) matter: the unseen 
matter needed to explain the high rotation velocities of atomic 
hydrogen in the outer parts of spiral galaxies1

'
2

, and the much 
larger amount of (non-baryonic) matter needed to prevent the uni-
verse from expanding forever 1 (producing either a 'flat' or a 
'closed' Universe)3

• Several models have been proposed to provide 
the dark matter required within galaxy haloes for a flat universe, 
of which cold dark matter (CDM) has proved the most successful 
at reproducing the observed large-scale structure of the 
Universe4

-
6

• CDM belongs to a class of non-relativistic particles 
that interact primarily through gravity, and are named dissipa-
tionless because they cannot dissipate energy (baryonic particles 
can lose energy by emitting electromagnetic radiation). Here I 
show that the modelled small-scale properties of CDM7

-
9 are fun-

damentally incompatible with recent observations1
(}-

13 of dwarf 
galaxies, which are thought to be completely dominated by dark 
matter on scales larger than a kiloparsec. Thus, the hypothesis 
that dark matter is predominantly cold seems hard to sustain. 

Inflationary and nucleosynthesis arguments have played a 
major role in advocating exotic particles as dark matter3

; the 
former because inflation generally requires a flat Universe, and 
the latter because all the dark matter cannot be baryonic. These 
particles are called exotic because they have yet to be detected. 
They interact with baryons only via the gravitational force, and 
are therefore termed collisionless, as short-range particle-
particle forces are not important. Depending on their present-
day velocities, particles can be classed as either cold (for 
example, axions) or hot (for example, light neutrinos 14

). A uni-
verse dominated by hot dark matter (HDM) has difficulty in 
forming small-scale structure 15

"
16 unless it is combined with a 

mechanism to seed galaxy formation, such as cosmic strings 17
. 

CDM-dominated universes have been extensively investigated 
numerically, and have proved quite successful at reproducing 
the observed clustering pattern on scales from galaxies to clusters 
of galaxies4

-
6

. Structure formation in these models proceeds in 
a bottom-up fashion, with small over-densities in the mass distri-
bution collapsing first and subsequently merging hierarchically 
to form larger objects. Very simply put, dwarf galaxies form 
first, and then merge to form larger galaxies. Galaxies form from 
gas that has cooled within the deep potential wells provided by 
the dark-matter haloes, plus the accretion of gas-rich subclumps 
which are part of the merging hierarchy. The dominant force 
which drives structure formation is gravity, and numerical simu-
lations have proved a useful tool with which to study the non-
linear growth of stucture formation over a wide range of 
dynamical scales. 

One of the first major successes apparent from the numerical 
simulations of cosmological models dominated by collisionless 
dark matter, was the formation around galaxy-sized structures 
of dark haloes whose density profiles fall approximately as 
r;;: 2

, where rg is the distance from the centre of the halo 18
•
19

. This 
implied that the stars or gas would have a constant circular 
velocity at any position within the halo, vc(rg)=(Gmglrg) 112

, 

where mg is the mass within rg, in agreement with the observed 
rotation of gas in large spiral galaxies. The structure of dark 
haloes has recently been re-examined at a resolution 50 times 
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higher than the original simulations8
•
9

, and confirms the initial 
numerical investigations. Moreover, the density profiles increase 
to distances less than the resolution limit of kpc, a result 
which complements analytical studies of the formation of iso-
lated spherical haloes 7 . 

The density profiles of the simulated CDM haloes can be 
fitted relatively well by the empirical Hernquist profile8

, which 
on scales of 10-50 kpc gives a density profile falling approxi-
mately as r;;: 2

, and on smaller scales as r;;: 1
• The resulting rotation 

curve is described by vc(rg) = ( Gm,rg) 112 l(rg + rs), where the 
effective mass m, can be taken as the mass within the virial 
radius, and r, is a scale representing the peak height of the initial 
density fluctuation8

. Dubinski and Carlberg8 simulated the for-
mation of a large halo with peak circular velocity 

and obtained values of m,=2.0x 1012 M 0 
and rs = 26 kpc. Warren et a/. 9 present the rotation curve of a 
halo from one of their simulations, which has a peak circular 
velocity Vc.max 140 km s- 1

• For this halo the Hernquist profile 
with parameters ms=2.5 x 10 11 M 0 and r,= 13 kpc fits very well 
on scales up to kpc (although it appears to fall too 
low on larger scales). These parameters agree well with those 
obtained by Dubinski and Carlberg8

, scaled to the virial mass 
of the halo, that is m, oc and assuming that rs oc Vc.max. The 
rotation curves presented by Warren et a/. 9 appear to demon-
strate that this scaling holds down to the smallest haloes in their 
simulations, which have amplitude km s- 1

• 

Determining the structure of dark haloes from the observa-
tions is difficult, and can be constrained only in a handful of 
galaxies because of uncertainties in the mass-to-light (M 1 L) 
ratio of the disk material. (The luminous and 
molecular and atomic gas--can contribute a large fraction to 
the total mass within the central halo and must be subtracted 
to find the dark-matter distribution.) Typically, M 1 L ratios of 
the order of unity are adopted, which would imply that in a 
large spiral galaxy like our own the gravity of the luminous 
material dominates that of the dark matter to distances (from 
the centre) of the order of kpc (refs 20-22). On scales 

10 kpc, in this example the dark matter density is not falling 
as steeply as r;;: 2

, and this core radius demarcates a transition 
between the regions where dark matter and luminous matter 
dominate. By arbitrarily increasing the disk MIL ratio the role 
of the dark halo can be reduced, at the expense of increasing 
the core radius. Lowering the disk MIL ratio reduces the core 
radius. Dynamical models of the disk yield values23 of M 1 L 1, 
however. 

Dwarf spiral galaxies provide excellent probes of the internal 
structure of dark haloes, as these galaxies are completely domi-
nated by dark matter on scales larger than a kiloparsec (refs 10-
13). Furthermore, most of the baryonic mass is in the form of 
neutral hydrogen (HI) within the disk, the mass of which can 
be determined using the observed 21-cm emission. We can there-
fore use these galaxies to study the inner structure of dark haloes 
with very little ambiguity about the contribution from the lumin-
ous material and resultant uncertainties in the disk MIL ratio. 
Less than a dozen rotation curves have been measured for dwarf 
galaxies, but a trend is clearly apparent: the rotational velocity 
of the gas rises over most of the observed region, which goes 
many optical scale lengths into the dark halo, but which is within 
the core of the mass distribution (Fig. 1 ). For example, the 
rotation curve of the dwarf galaxy DD0154 is dominated by 
dark matter beyond kpc (ref. 10). In this system the mass 
of H I (2. 7 x 108M 0 ), is one-fifth that of the stellar component, 
and the atomic gas extends over 15 optical scale lengths into the 
dark halo, which has total mass ;:: 5 x 109 M 0 . Although dwarf 
spirals such as the DDO galaxies have luminosities only a few 
per cent of an L* galaxy, they are the most numerous, and a 
large fraction of the mass in the Universe is associated with these 
systems. 

Figure 1 shows the predicted rotation curves for several dwarf 
spiral galaxies, assuming that the dark haloes are dominated by 
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FIG. 1 The observed rotation curves of 
four isolated dwarf spiral galaxies 
(data points); v, is the rotation velocity 
of material at a distance rg from the 60 

60 

60 

40 

000154 DD0170 

centre of each galaxy. The dotted lines 
show a fit to the observed rotation 
curve assuming zero contribution from 
the baryons, and a dark halo with an 
isothermal density profile 

+ fg), where rc is the core 
radius. These 'maximum halo' models 
are designed to minimize the contri-
bution of the disk, hence provide a 
lower limit to rc. and they demonstrate 
that even if the gravity of the baryons 
is ignored, the dark haloes must have 
large core radii. If the observed bar-
yons are taken into account, we find 
that r, is actually larger. The 
core radii of these dark haloes are 
fairly tightly constrained and show an 
interesting trend of increasing size 
with Vc.maxo scaling approximately as 
measured by Kormendl3

. (Refer-
ences for the data: DD0154 (ref. 11), 
DD0170 (ref. 12), NGC3109 (ref. 13), 
DD0105 (ref. 3).) The dashed lines 
show the rotation curves obtained 
adopting a Hernquist density profile 
with effective radius, rs, scaled using 
f 5 CX:Vc.ma' (observed) and the effective 
mass, m5 , scaled so that the curve 
passes through this same point. These 
curves are drawn fainter on scales 
below the resolution limit of the simu-
lations. The model predictions overes-
timate the observed mass within r c/2 
by a factor of 4 in each galaxy. The 
rotation curve of NGC3109 implies 
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that for r< 4 kpc, p(r)cx:r00 to 5% 
accuracy, whereas the Hernquist profile predicts p(r)cx:r 1

. If rs and ms 
are left as free parameters, values of rs as large as 75 kpc are required 

collisionless particles. The model profiles are too steep on small 
scales, and clearly overestimate the observed rotational velocity 
for 10 kpc. The disparity between the models and the data 
follows directly from the nature of collisionless particles, which 
have no physically associated length scale, with the result that 
dark matter haloes should have zero effective core radii. This 
applies to any model in which the dark matter is cold and colli-
sionless (for example, mixed dark-matter models24

), CDM mod-
els with a cosmological constane5 or models with various 
combinations of cosmological density parameter and Hubble 
constant. Clearly, in order to give rise to cores in the dark-matter 
distribution, additional physical constraints are required, such 
as could be provided by HDM or an open universe dominated 
by baryonic dark matter. Although HDM may have been 
excluded from the dark matter candidate list for other 
reasons 16

•
17

, phase space constraints do provide a natural mecha-
nism that can limit the central density of dark-matter particles. 
Baryonic dark matter can interact with itself via electromagnetic 
forces as well as gravity; hence a characteristic scale can be 
introduced, perhaps resulting from supernova-driven winds or 
cooling flows. 

Are there any observational biases which could lower the true 
velocities on small-scales and give rise to a false core in the mass 
distribution? In order to avoid problems introduced by telescope 
resolution, we have plotted data points only at separations equal 
to the half-power beam width ( arcsec). Beam smearing 
is important over scales larger than the beam width, and particu-
larly over the region where the rotation curve is rising, which 
is typically over most of the data for dwarf galaxies. Detailed 

630 

6 6 10 12 20 

rg (kpc) 

before an acceptable fit can be made to the rotation curves of dwarf 
galaxies34

. 

modelling of the effects of beam smearing using both simulated 
and real data26

, shows that the velocities are biased low by 0% 
over the rising part of the rotation curve, and as the curve flattens 
the effect becomes negligible. We note that several dwarf galax-
ies, such as NGC3109 (ref. 27), have been mapped at much 
higher resolution using optical Fabry-Perot techniques, which 
alleviate any remaining worries about the presence of false dark-
matter cores in galaxy haloes. All of the galaxies in Fig. 1 have 
inclinations >60°, the optimum range for minimizing errors. The 
internal velocity dispersion of the gas is 7-10 km s- 1

, which 
provides a small amount of pressure support (corrected for in 
the data by using the asymmetric drift equation). This correction 
is typically <5% of the observed rotational velocity, and is not 
biased towards lowering the velocities within the central 
halo22.2R_ 

Unless the numerical simulations are giving misleading results 
on scales I 0 times their resolution limit, I conclude that the 
dominant dark-matter component cannot be composed of colli-
sionless, weakly interacting particles (CDM). Numerical effects, 
such as two-body relaxation, appear to be unimportant, as ident-
ical results were obtained with different N-body codes and after 
increasing the numbers of particles by an order of magnitude: 
haloes in theN-body simulations are typically resolved by many 
thousands of particles. Although the numerical simulations dis-
cussed above follow only a dissipationless component, gas cools 
efficiently within dark haloes29 and can modify the halo mass 
distribution. For example, the adiabatic cooling of gas, which 
contracts to form the bulge and disk, increases the central density 
of dark matter and would tend to erase any pre-existing core 
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ABSTRACT
According to the hierarchical clustering scenario, galaxies are assembled by merging and accretion of

numerous satellites of di†erent sizes and masses. This ongoing process is not 100% efficient in destroying
all of the accreted satellites, as evidenced by the satellites of our Galaxy and of M31. Using published
data, we have compiled the circular velocity distribution function (VDF) of galaxy satellites in the(Vcirc)Local Group. We Ðnd that within the volumes of radius of 570 kpc (400 h~1 kpc assuming the Hubble
constant1 h \ 0.7) centered on the Milky Way and Andromeda, the average VDF is roughly approx-
imated as km s~1)~1.4B0.4 h3 Mpc~3 for in the range B10È70 km s~1.n( [ Vcirc) B 55 ^ 11(Vcirc/10 VcircThe observed VDF is compared with results of high-resolution cosmological simulations. We Ðnd that
the VDF in models is very di†erent from the observed one : km s~1)~2.75 h3n( [ Vcirc) B 1200(Vcirc/10
Mpc~3. Cosmological models thus predict that a halo the size of our Galaxy should have about 50 dark
matter satellites with circular velocity greater than 20 km s~1 and mass greater than 3 ] 108 withinM

_a 570 kpc radius. This number is signiÐcantly higher than the approximately dozen satellites actually
observed around our Galaxy. The di†erence is even larger if we consider the abundance of satellites in
simulated galaxy groups similar to the Local Group. The models predict D300 satellites inside a 1.5
Mpc radius, while only D40 satellites are observed in the Local Group. The observed and predicted
VDFs cross at B50 km s~1, indicating that the predicted abundance of satellites with km s~1Vcirc Z 50
is in reasonably good agreement with observations. We conclude, therefore, that unless a large fraction
of the Local Group satellites has been missed in observations, there is a dramatic discrepancy between
observations and hierarchical models, regardless of the model parameters. We discuss several possible
explanations for this discrepancy including identiÐcation of some satellites with the high-velocity clouds
observed in the Local Group and the existence of dark satellites that failed to accrete gas and form stars
either because of the expulsion of gas in the supernovae-driven winds or because of gas heating by the
intergalactic ionizing background.
Subject headings : cosmology : theory È galaxies : clusters : general È galaxies : interactions È

Galaxy : formation È Local Group È methods : numerical

1. INTRODUCTION

Satellites of galaxies are important probes of the
dynamics and masses of galaxies. Currently, analysis of
satellite dynamics is one of the best methods of estimating
the masses within large radii of our Galaxy and of the Local
Group (e.g., Einasto & Lynden-Bell 1982 ; Lynden-Bell,
Cannon, & Godwin 1983 ; Zaritsky et al. 1989 ; Fich &
Tremaine 1991), as well as the masses of other galaxies
(Zaritsky & White 1994 ; Zaritsky et al. 1997). Although the
satellites of the Milky Way and Andromeda galaxy have
been studied for a long period of time, their number is still
uncertain. More and more satellites are being discovered
(Irwin et al. 1990 ; Whiting, Irwin, & Hau 1997 ; Armandro†,
Davies, & Jacoby 1998 ; Karachentseva & Karachentsev
1998) with a wide range of properties ; some of them are
relatively large and luminous and have appreciable star for-
mation rates (e.g., M33 and the Large Magellanic Cloud
[LMC]). Exempting the strange case of IC 10, which
exhibits a high star formation rate (0.7 yr~1 ; MateoM

_1998), most of the satellites are dwarf spheroidals and dwarf
ellipticals with signs of only mild star formation of 10~3

yr~1. The star formation history of the satellites showsM
_

1 Assuming h km s~1 Mpc~1.H0 \ 100

remarkable diversity : almost every galaxy is a special case
(Grebel 1998 ; Mateo 1998). This diversity makes it very
difficult to come up with a simple general model for forma-
tion of satellites in the Local Group. Because of the gener-
ally low star formation rates, it is not unexpected that the
metallicities of the satellites are low: from B10~2 for Draco
and And III to B10~1 for NGC 205 and Pegasus (Mateo
1998). There are indications that properties of the satellites
correlate with their distance to the Milky Way (MW) or
Andromeda, with dwarf spheroidals and dwarf ellipticals
being closer to the central galaxy (Grebel 1997). Overall,
about 40 satellites in the Local Group have been found.

Formation and evolution of galaxy satellites is still an
open problem. According to the hierarchical scenario, small
dark matter (DM) halos should on average collapse earlier
than larger ones. To some degree, this is supported by
observations of rotation curves of DM-dominated dwarfs
and low surface brightness galaxies. The curves indicate
that the smaller the maximum circular velocity, the higher
the central density of these galaxies. This is expected from
the hierarchical models in which the smaller galaxies col-
lapse earlier when the density of the universe was higher
(Kravtsov et al. 1998 ; Kormendy & Freeman 1998). Thus, it
is likely that the satellites of the MW galaxy were formed
before the main body of the MW was assembled. Some of
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VDFs cross at B50 km s~1, indicating that the predicted abundance of satellites with km s~1Vcirc Z 50
is in reasonably good agreement with observations. We conclude, therefore, that unless a large fraction
of the Local Group satellites has been missed in observations, there is a dramatic discrepancy between
observations and hierarchical models, regardless of the model parameters. We discuss several possible
explanations for this discrepancy including identiÐcation of some satellites with the high-velocity clouds
observed in the Local Group and the existence of dark satellites that failed to accrete gas and form stars
either because of the expulsion of gas in the supernovae-driven winds or because of gas heating by the
intergalactic ionizing background.
Subject headings : cosmology : theory È galaxies : clusters : general È galaxies : interactions È

Galaxy : formation È Local Group È methods : numerical

1. INTRODUCTION

Satellites of galaxies are important probes of the
dynamics and masses of galaxies. Currently, analysis of
satellite dynamics is one of the best methods of estimating
the masses within large radii of our Galaxy and of the Local
Group (e.g., Einasto & Lynden-Bell 1982 ; Lynden-Bell,
Cannon, & Godwin 1983 ; Zaritsky et al. 1989 ; Fich &
Tremaine 1991), as well as the masses of other galaxies
(Zaritsky & White 1994 ; Zaritsky et al. 1997). Although the
satellites of the Milky Way and Andromeda galaxy have
been studied for a long period of time, their number is still
uncertain. More and more satellites are being discovered
(Irwin et al. 1990 ; Whiting, Irwin, & Hau 1997 ; Armandro†,
Davies, & Jacoby 1998 ; Karachentseva & Karachentsev
1998) with a wide range of properties ; some of them are
relatively large and luminous and have appreciable star for-
mation rates (e.g., M33 and the Large Magellanic Cloud
[LMC]). Exempting the strange case of IC 10, which
exhibits a high star formation rate (0.7 yr~1 ; MateoM

_1998), most of the satellites are dwarf spheroidals and dwarf
ellipticals with signs of only mild star formation of 10~3

yr~1. The star formation history of the satellites showsM
_

1 Assuming h km s~1 Mpc~1.H0 \ 100

remarkable diversity : almost every galaxy is a special case
(Grebel 1998 ; Mateo 1998). This diversity makes it very
difficult to come up with a simple general model for forma-
tion of satellites in the Local Group. Because of the gener-
ally low star formation rates, it is not unexpected that the
metallicities of the satellites are low: from B10~2 for Draco
and And III to B10~1 for NGC 205 and Pegasus (Mateo
1998). There are indications that properties of the satellites
correlate with their distance to the Milky Way (MW) or
Andromeda, with dwarf spheroidals and dwarf ellipticals
being closer to the central galaxy (Grebel 1997). Overall,
about 40 satellites in the Local Group have been found.

Formation and evolution of galaxy satellites is still an
open problem. According to the hierarchical scenario, small
dark matter (DM) halos should on average collapse earlier
than larger ones. To some degree, this is supported by
observations of rotation curves of DM-dominated dwarfs
and low surface brightness galaxies. The curves indicate
that the smaller the maximum circular velocity, the higher
the central density of these galaxies. This is expected from
the hierarchical models in which the smaller galaxies col-
lapse earlier when the density of the universe was higher
(Kravtsov et al. 1998 ; Kormendy & Freeman 1998). Thus, it
is likely that the satellites of the MW galaxy were formed
before the main body of the MW was assembled. Some of
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FIG. 4.ÈProperties of satellite systems within 200 h~1 kpc from the
host halo. T op: The three-dimensional rms velocity dispersion of satellites
vs. the maximum circular velocity of the central halo. Solid and open
circles denote "CDM and CDM halos, respectively. The solid line is the
line of equal satellite rms velocity dispersion and the circular velocity of the
host halo. Middle : The number of satellites with circular velocity larger
than 10 km s~1 vs. circular velocity of the host halo. The solid line shows a
rough approximation presented in the legend. Bottom: The cumulative
circular VDF of satellites. Solid triangles show average VDF of MW and
Andromeda satellites. Open circles present results for the CDM simula-
tion, while the solid curve represents the average VDF of satellites in the
"CDM simulation for halos shown in the upper panels. To indicate the
statistics, the scale on the right y-axis shows the total number of satellite
halos in the "CDM simulation. Note that while the numbers of massive
satellites ([50 km s~1) agree reasonably well with the observed number of
satellites in the Local Group, models predict about 5 times more lower
mass satellites with km s~1.Vcirc \ 10È30

FIG. 5.ÈSame as in Fig. 4, but for satellites within 400 h~1 kpc from the
center of a host halo. In the bottom panel we also show the cumulative
velocity function for the Ðeld halos (halos outside of 400 h~1 kpc spheres
around seven massive halos), arbitrarily scaled up by a factor of 75. The
di†erence at large circular velocities km s~1 is not statisticallyVcirc [ 50
signiÐcant. Comparison between these two curves indicates that the veloc-
ity functions of isolated and satellite halos are very similar. As for the
satellites within the central 200 h~1 kpc (Fig. 4), the number of satellites in
the models and in the Local Group agrees reasonably well for massive
satellites with km s~1 but disagrees by a factor of 10 for low-Vcirc [ 50
mass satellites with km s~1.Vcirc \ 10È30

TABLE 3

SATELLITES IN "CDM MODEL INSIDE R \ 200/400 h~1 kpc FROM CENTRAL HALO

Halo Vcirc Halo Mass Vrms Vrotation
(km s~1) (h~1M

_
) Number of Satellites Fraction of Mass in Satellites (km s~1) (km s~1)

140.5 . . . . . . 2.93 ] 1011 9/15 0.053/0.112 99.4/94.4 28.6/15.0
278.2 . . . . . . 3.90 ] 1012 39/94 0.041/0.049 334.9/287.6 29.8/11.8
205.2 . . . . . . 1.22 ] 1012 27/44 0.025/0.051 191.7/168.0 20.0/11.3
175.2 . . . . . . 6.26 ] 1011 5/10 0.105/0.135 129.1/120.5 41.5/45.2
259.5 . . . . . . 2.74 ] 1012 24/52 0.017/0.029 305.0/257.3 97.1/16.8
302.3 . . . . . . 5.12 ] 1012 37/105 0.055/0.112 394.6/331.6 39.4/15.7
198.9 . . . . . . 1.33 ] 1012 24/58 0.048/0.049 206.1/169.3 17.7/12.1
169.8 . . . . . . 7.91 ] 1011 17/26 0.053/0.067 162.8/156.0 9.3/5.0

CDM, LCDM

LG satellites
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ABSTRACT
We show that dissipationless " cold dark matter simulations predict that the majority of the
most massive subhaloes of the Milky Way are too dense to host any of its bright satellites (LV >

105 L⊙). These dark subhaloes have peak circular velocities at infall of V infall = 30–70 km s−1

and infall masses of (0.2–4) × 1010 M⊙. Unless the Milky Way is a statistical anomaly,
this implies that galaxy formation becomes effectively stochastic at these masses. This is in
marked contrast to the well-established monotonic relation between galaxy luminosity and
halo circular velocity (or halo mass) for more massive haloes. We show that at least two (and
typically four) of these massive dark subhaloes are expected to produce a larger dark matter
annihilation flux than Draco. It may be possible to circumvent these conclusions if baryonic
feedback in dwarf satellites or different dark matter physics can reduce the central densities
of massive subhaloes by order unity on a scale of 0.3–1 kpc.

Key words: Galaxy: halo – galaxies: abundances – cosmology: theory – dark matter.

1 I N T RO D U C T I O N

The cold dark matter (CDM) paradigm has been demonstrably suc-
cessful at explaining a variety of observations on cosmological
scales. Tests on smaller scales are often complicated by the physics
of galaxy formation, but are crucial for verifying the CDM model.
Perhaps the most prominent issue facing "CDM on galactic scales
is the large discrepancy between the number of observed and ex-
pected satellite galaxies of the Milky Way (MW; Kauffmann, White
& Guiderdoni 1993; Klypin et al. 1999; Moore et al. 1999; see Bul-
lock 2010 for a recent review). Accordingly, much theoretical work
has been devoted to understanding how to reproduce the satellite
population of the MW.

While some "CDM models of the MW’s satellite population
place the most luminous dwarf galaxies in the most massive sub-
haloes at redshift zero (Stoehr et al. 2002; Hayashi et al. 2003;
Peñarrubia, McConnachie & Navarro 2008), recent kinematic stud-
ies of the satellites have shown that this is unlikely to be the case
(Walker et al. 2009; Strigari, Frenk & White 2010). Other mod-
els postulate that MW satellite galaxies correspond to subhaloes
that were the most massive at some earlier time (Bullock, Kravtsov
& Weinberg 2000; Kravtsov, Gnedin & Klypin 2004b; Ricotti &
Gnedin 2005; Koposov et al. 2009; Okamoto & Frenk 2009; Busha
et al. 2010), often the epoch of reionization, with galaxy formation
strongly suppressed in lower mass subhaloes (see Kravtsov 2010 for
a recent review). In addition, many faint MW satellites have been
discovered in the SDSS (e.g. Willman et al. 2005; Belokurov et al.

⋆Center for Galaxy Evolution Fellow.
†E-mail: m.bk@uci.edu

2007), and it has become clear that up to a factor of ∼5–20 times
as many faint galaxies could remain undetected at present owing
to incomplete sky coverage, luminosity bias and surface brightness
limits (Tollerud et al. 2008; Walsh, Willman & Jerjen 2009; Bullock
et al. 2010).

While this theoretical and observational progress has alleviated
– though not eliminated – concerns about the mismatch between
the number of low-mass subhaloes and faint MW satellites, a press-
ing question remains: what is the stellar content of massive MW
subhaloes at redshift zero? In this Letter, we focus on properties
of massive subhaloes in "CDM galaxy-mass haloes and examine
which MW satellites – if any – can be hosted by such subhaloes.

2 SI M U L AT I O N S A N D DATA

Our "CDM predictions are based on dark matter subhaloes from
the Aquarius project (Springel et al. 2008) and the Via Lactea II sim-
ulation (VL-II; Diemand et al. 2007, 2008). The Aquarius project
consists of six galaxy-mass haloes – denoted A through F – simu-
lated at a series of numerical resolutions. Although only halo A was
simulated at the highest resolution level, all six haloes were simu-
lated with particle mass mp = (0.64–1.4) × 104 M⊙ and Plummer-
equivalent gravitational softening ϵ = 66 pc; it is this set of ‘level 2’
simulations that we use in this Letter. The VL-II simulation of one
galaxy-mass halo used mp = 4.1 × 103 M⊙ and ϵ = 40 pc. A
notable difference between the simulations is the background cos-
mological model: the Aquarius simulations used a value of 0.9 for
the power spectrum normalization σ 8 and 1.0 for the spectral index
of the primordial power spectrum ns, while VL-II used σ 8 = 0.74
and ns = 0.951. The best current estimates of these parameters,
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σ 8 = 0.816 ± 0.024 and ns = 0.968 ± 0.012 (Komatsu et al. 2011),
fall in between those used for the simulations.

In each simulation, we select every subhalo that lies within
300 kpc of the host’s centre and has a maximum circular veloc-
ity Vmax ≡ max{[GM(<R)/R]1/2} exceeding 10 km s−1. We char-
acterize a subhalo prior to infall on to its host via V infall, which we
define to be the value of Vmax when the subhalo’s mass was at a
maximum (over its entire evolution) in Aquarius and the maximum
value of Vmax over the subhalo’s entire history for VL-II. The mea-
sured values of Vmax and Rmax (the radius at which Vmax is attained)
at redshift zero are used to determine each subhalo’s inner mass
distribution by assuming that the subhalo’s density structure can be
modelled by a Navarro, Frenk & White (1997, hereinafter NFW)
profile with the same Vmax and Rmax. Using subhaloes extracted
from the Millennium-II Simulation (Boylan-Kolchin et al. 2009),
we have verified that this approach gives the correct mass to better
than 10 per cent at radii that are well resolved1 (as expected from
earlier work by Kazantzidis et al. 2004).

To connect the N-body subhaloes to the bright (LV > 105 L⊙)
dwarf spheroidal galaxies of the MW, we turn to kinematic mea-
surements of the dwarfs’ masses. Walker et al. (2009) and Wolf et al.
(2010) have recently shown that dispersion-supported galaxies such
as the MW dwarf spheroidals have dynamical masses M1/2 within
their deprojected half-light radii R1/2 that are well-constrained by
line-of-sight velocity measurements. Since these galaxies are all
strongly dark matter dominated even within R1/2 (e.g. Mateo 1998),
observed values of M1/2 are effectively measurements of the dark
matter mass within R1/2. A necessary, but not sufficient, condition
for a subhalo to possibly host a given dwarf is that Msub(R1/2) agrees
with Mdwarf (R1/2). Conversely, a dwarf cannot live in a subhalo if
Msub(R1/2) and Mdwarf (R1/2) differ substantially.

Given the values of M1/2 calculated by Wolf et al. (2010), we
can therefore investigate what {Rmax, Vmax} values of NFW sub-
haloes are consistent with the observed dynamics of the bright MW
dwarf spheroidals. We exclude Sagittarius, which is far from dy-
namical equilibrium, for the moment. Fig. 1 shows the resulting
1σ confidence regions in Vmax–Rmax space for these nine dwarfs.
The behaviour of the contours for each of the dwarfs is qualita-
tively similar: there is a global minimum in Vmax, corresponding to
Rmax = R1/2 and Vmax =

√
3σlos,⋆ (Wolf et al. 2010), with allowed

values of Vmax increasing for both smaller and larger values of Rmax

(corresponding to Rmax < R1/2 and Rmax > R1/2, respectively). The
lower portions of the curves, where Rmax < R1/2, are unlikely to be
physically plausible models for the hosts of dwarfs, as they require
that the dark matter subhalo has been strongly affected by tides on
the scale of the luminous matter in the dwarf.

3 RESULTS

In Fig. 2, we plot data for all subhaloes from the six Aquarius
simulations (circles) and from VL-II (triangles), colour-coded by
V infall. The grey-shaded band corresponds to 2σ constraints from
the MW dwarf spheroidal galaxies in Fig. 1. In terms of the total
mass within 300 pc (M300; Strigari et al. 2008), this grey-shaded

1 While both the host haloes and subhaloes from Aquarius are fitted some-
what better by Einasto (1965) profiles than by NFW profiles (Springel et al.
2008; Navarro et al. 2010), we use NFW profiles here because they provide
more conservative constraints: at fixed Vmax and Rmax, an Einasto profile
contains more mass than an NFW profile within a given radius R for rea-
sonable values of the Einasto shape parameter α when R < Rmax.

Figure 1. Constraints on the Vmax–Rmax values (assuming NFW profiles) of
the hosts of the nine bright (LV > 105 L⊙) MW dwarf spheroidal galaxies.
The coloured bands show 1σ confidence intervals based on measured values
of R1/2 and M1/2 from Wolf et al. (2010).

Figure 2. Subhaloes from all six Aquarius simulations (circles) and VL-
II (triangles), colour-coded according to V infall. The grey-shaded region
shows the 2σ confidence interval for possible hosts of the bright MW dwarf
spheroidals (see Fig. 1).

region is almost exactly the same as 6.5 × 106 < M300/M⊙ < 3 ×
107. Many of the subhaloes lie in the range that is consistent at the
2σ level with the dwarfs, but there are a large number of subhaloes
that do not. These subhaloes all have central densities that are too
high to host any of the bright MW dwarf spheroidals; they also have
higher values of both Vmax and V infall, on average.

The MW contains three additional satellites that are brighter than
the nine dwarf spheroidals included in Figs 1 and 2: the Large
Magellanic Cloud (LMC), the Small Magellanic Cloud (SMC), and
the Sagittarius dwarf spheroidal. In the context of $CDM models
of galaxy formation, the Magellanic Clouds are expected to reside
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σ 8 = 0.816 ± 0.024 and ns = 0.968 ± 0.012 (Komatsu et al. 2011),
fall in between those used for the simulations.

In each simulation, we select every subhalo that lies within
300 kpc of the host’s centre and has a maximum circular veloc-
ity Vmax ≡ max{[GM(<R)/R]1/2} exceeding 10 km s−1. We char-
acterize a subhalo prior to infall on to its host via V infall, which we
define to be the value of Vmax when the subhalo’s mass was at a
maximum (over its entire evolution) in Aquarius and the maximum
value of Vmax over the subhalo’s entire history for VL-II. The mea-
sured values of Vmax and Rmax (the radius at which Vmax is attained)
at redshift zero are used to determine each subhalo’s inner mass
distribution by assuming that the subhalo’s density structure can be
modelled by a Navarro, Frenk & White (1997, hereinafter NFW)
profile with the same Vmax and Rmax. Using subhaloes extracted
from the Millennium-II Simulation (Boylan-Kolchin et al. 2009),
we have verified that this approach gives the correct mass to better
than 10 per cent at radii that are well resolved1 (as expected from
earlier work by Kazantzidis et al. 2004).

To connect the N-body subhaloes to the bright (LV > 105 L⊙)
dwarf spheroidal galaxies of the MW, we turn to kinematic mea-
surements of the dwarfs’ masses. Walker et al. (2009) and Wolf et al.
(2010) have recently shown that dispersion-supported galaxies such
as the MW dwarf spheroidals have dynamical masses M1/2 within
their deprojected half-light radii R1/2 that are well-constrained by
line-of-sight velocity measurements. Since these galaxies are all
strongly dark matter dominated even within R1/2 (e.g. Mateo 1998),
observed values of M1/2 are effectively measurements of the dark
matter mass within R1/2. A necessary, but not sufficient, condition
for a subhalo to possibly host a given dwarf is that Msub(R1/2) agrees
with Mdwarf (R1/2). Conversely, a dwarf cannot live in a subhalo if
Msub(R1/2) and Mdwarf (R1/2) differ substantially.

Given the values of M1/2 calculated by Wolf et al. (2010), we
can therefore investigate what {Rmax, Vmax} values of NFW sub-
haloes are consistent with the observed dynamics of the bright MW
dwarf spheroidals. We exclude Sagittarius, which is far from dy-
namical equilibrium, for the moment. Fig. 1 shows the resulting
1σ confidence regions in Vmax–Rmax space for these nine dwarfs.
The behaviour of the contours for each of the dwarfs is qualita-
tively similar: there is a global minimum in Vmax, corresponding to
Rmax = R1/2 and Vmax =

√
3σlos,⋆ (Wolf et al. 2010), with allowed

values of Vmax increasing for both smaller and larger values of Rmax

(corresponding to Rmax < R1/2 and Rmax > R1/2, respectively). The
lower portions of the curves, where Rmax < R1/2, are unlikely to be
physically plausible models for the hosts of dwarfs, as they require
that the dark matter subhalo has been strongly affected by tides on
the scale of the luminous matter in the dwarf.

3 RESULTS

In Fig. 2, we plot data for all subhaloes from the six Aquarius
simulations (circles) and from VL-II (triangles), colour-coded by
V infall. The grey-shaded band corresponds to 2σ constraints from
the MW dwarf spheroidal galaxies in Fig. 1. In terms of the total
mass within 300 pc (M300; Strigari et al. 2008), this grey-shaded

1 While both the host haloes and subhaloes from Aquarius are fitted some-
what better by Einasto (1965) profiles than by NFW profiles (Springel et al.
2008; Navarro et al. 2010), we use NFW profiles here because they provide
more conservative constraints: at fixed Vmax and Rmax, an Einasto profile
contains more mass than an NFW profile within a given radius R for rea-
sonable values of the Einasto shape parameter α when R < Rmax.

Figure 1. Constraints on the Vmax–Rmax values (assuming NFW profiles) of
the hosts of the nine bright (LV > 105 L⊙) MW dwarf spheroidal galaxies.
The coloured bands show 1σ confidence intervals based on measured values
of R1/2 and M1/2 from Wolf et al. (2010).

Figure 2. Subhaloes from all six Aquarius simulations (circles) and VL-
II (triangles), colour-coded according to V infall. The grey-shaded region
shows the 2σ confidence interval for possible hosts of the bright MW dwarf
spheroidals (see Fig. 1).

region is almost exactly the same as 6.5 × 106 < M300/M⊙ < 3 ×
107. Many of the subhaloes lie in the range that is consistent at the
2σ level with the dwarfs, but there are a large number of subhaloes
that do not. These subhaloes all have central densities that are too
high to host any of the bright MW dwarf spheroidals; they also have
higher values of both Vmax and V infall, on average.

The MW contains three additional satellites that are brighter than
the nine dwarf spheroidals included in Figs 1 and 2: the Large
Magellanic Cloud (LMC), the Small Magellanic Cloud (SMC), and
the Sagittarius dwarf spheroidal. In the context of $CDM models
of galaxy formation, the Magellanic Clouds are expected to reside
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Historically first small scale problems

• substructure problem 
(missing satellites)

• core/cusp problem

• too-big-to-fail problem
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Current tensions

core-cusp need collisions single species SIDM is enough

missing satellites may be gone diversity -> baryons (?)

too big to fail seems still be present multicomponent DM is needed 
to change the halo abundance

satellite planes ???, perhaps "initial conditions" at high z if so: need strong collisions (fluid) 
+cooling = naturally multicomponent

galactic bars need shallow potential cores/heating can do

profile diversity grav collapse can do collapse takes time to occur, 
mergers reset the clock

SMBH formation need collisional + dissipative DM naturally multicomponent

WIMP miracle gone(?) (blame: direct detection exp)

The Energy Scale

• gauge interactions determine 
energy scale in a known way

• F, Mmess set by dynamics of 
supersymmetry-breaking
– same for all sectors

• in each sector, ratio of coupling 
to mass is approximately fixed

• same ratio determines 
annihilation cross-section 
– determines relic density   

(Scherrer, Turner; Kolb, Turner)

– if WIMP miracle gets it right, 
so does every other sector
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• History & Motivation  

• Models (SIDM, etc) 

• Overview of 2cDM ‣ physics 
‣ cosmology 
‣ understanding



Early DM models

Self-Interacting Dark Matter (SIDM) Spergel & Steinhardt, 1999
elastic scattering in the dark sector

Two-component DM (2cDM) with flavor mixing
MVM, 2000

works simultaneously for Core/Cusp & Missing satellites

"Fuzzy" Dark Matter

de Broglie wave length ~ 1 kpc core, m~ 1e-22 eV
Hu, et al, 1999

Annihilating Dark Matter Kamionkowski, et al, 2008
changes late structure formation

Boosted Dark Matter
"Lorenz-boosted"

ETHOS changes the initial power spectrum and late structure formation Vogelsberger, 2015

Necib, et al, 2017



Other DM models

Axion-like particle DM (a la fuzzy DM)

many inelastic/multi-component DM models were originally 
motivated by desire to reconcile DAMA/Libra data with other 
Direct Detection experiments (Edelweiss, XENON,...) 

Exothermic/Endothermic DM

Inelastic DM

Dark massive photon DM

Atomic DM

Two-component DM (but not 2cDM)

...more...

postulate two or more states 
"heavy+light" or  
"excited+ground states" 
and inelastic interactions between them 

Excited DM

inelastic, multicomponent models are 
almost equivalent from the point of view 
of simulations (except for fluid DM)

Warm Dark Matter changes initial power spectrum



• History & Motivation  

• Models (SIDM, etc) 

• Overview of 2cDM ‣ physics 
‣ cosmology 
‣ understanding
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A flavor-mixed particle

B. Pontekorvo 
Zh. Teor. Exp Fiz (1957); Soviet JETP (1958) 

Interactions do not care about propagation (mass) eigenstates; 
Propagation does not care about interaction (flavor) eigenstates.   



A flavor-mixed particle

Flavor is a quantum property that allows a particle to have  
several masses altogether, at the same time and vice versa



Schrödinger equation

Hfree Hgrav V

Illustrative model

MVM, J Phys A 2010

𝜙(x)

V1(x)

?



No flavor mixing case

scatterer



red – heavy state 
blue – light state

scatterer

With flavor mixing



Quantum evaporation

MVM, J Phys A 2010; JCAP 2014

space

tim
e

scatterer

The particle can leak out of 

(or “evaporate” from) 

the gravitational potential, 

scatterer

ϕ(x)

Particle gradual escape from a gravitational potential (in 
"elastic" collisions) without changing particle's identity



“Munchausen effect”

Baron von Munchausen lifted himself (and his horse) out of 
the mud by pulling on his own pigtail.

It is one of the “true” stories from “The Surprising 
Adventures of Baron Munchausen” by Rudolph Raspe



Supplementary Materials

1 General theory of flavor-mixed self-interacting dark mat-
ter

The propagation (mass) and interaction (flavor) eigenstates of mixed particles are related by

a unitary transformation, |fii =
P

j Uij |mji, where |fi and |mi denote the flavor and mass

eigenstates, and U is a unitary matrix. Here we consider stable two-flavor particles. We will

interchangeably denote flavor eigenstates as |f↵i and |f�i or as just ↵ and �, whenever it’s not

confusing. Since masses of the mass eigenstates are different, we refer to them as heavy and

light, hence ml < mh. Thus, similarly, the mass eigenstates are denoted as |mhi and |mli or

as just h and l. A two-component flavor-mixed particle is described by a two-component wave-
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eigenstates are related as before, |ffi = U2 |mmi, where the unitary matrix is

U2 ⌘ U ⌦ U =
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✓ � cos ✓ sin ✓ � cos ✓ sin ✓ sin2
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cos ✓ sin ✓ cos2
✓ � sin2

✓ � cos ✓ sin ✓

cos ✓ sin ✓ � sin2
✓ cos2

✓ � cos ✓ sin ✓

sin2
✓ cos ✓ sin ✓ cos ✓ sin ✓ cos2

✓

1

CCA (6)

The interaction matrix is diagonal in the flavor basis,

Ṽ =

0

BB@

V↵↵ 0 0 0
0 V↵� 0 0
0 0 V�↵ 0
0 0 0 V��

1

CCA , (7)

where V�↵ = V↵� for indistinguishable particles. In the mass basis, we have

V = U
†
2 Ṽ U2 =

0

BB@

A E E D

E C D F

E D C F

D F F B

1

CCA , (8)

where

A = 1
8 [3V↵↵ + 2V↵� + 3V�� + 4(V↵↵ � V��) cos 2✓ + (V↵↵ � 2V↵� + V��) cos 4✓] ,

B = 1
8 [3V↵↵ + 2V↵� + 3V�� � 4(V↵↵ � V��) cos 2✓ + (V↵↵ � 2V↵� + V��) cos 4✓] ,

C = 1
8 [V↵↵ + 6V↵� + V�� � (V↵↵ � 2V↵� + V��) cos 4✓] ,

D = 1
4 [V↵↵ � 2V↵� + V��] sin2 2✓,

E = �1
4 [V↵↵ � V�� + (V↵↵ � 2V↵� + V��) cos 2✓] sin 2✓,

F = �1
4 [V↵↵ � V�� � (V↵↵ � 2V↵� + V��) cos 2✓] sin 2✓,

Since trace is invariant under a unitary transformation, Tr(V ) = V↵↵ + 2V↵� + V��; also useful

is
P

i,j V
2
ij = V

2
↵↵ + 2V 2

↵� + V
2
�� .

The physics represented by the V -matrix is easy to understand. There are four different

interaction combinations (input channels): hh ! . . . , hl ! . . . , lh ! . . . , and ll ! . . .

(although the states hl and lh are identical for indistinguishable particles by symmetry, we
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if v
0
l > vesc, then both |mli escape from the potential. Second, if instead an elastic scattering

occurs, hl ! hl or hl ! lh, then the kinetic energy does not change and the eigenstates remain

trapped. Therefore, upon any interaction involving the hl ! ll process the amplitude of the

heavy eigenstate decreased irreversibly. The total probability is still unity, but the probability

to detect a particle (an electron neutrino, for example) inside the potential has decreased and

the probability of its detection somewhere outside has become larger. Of course, the overall en-

ergy is conserved: the light eigenstate climbs up the potential and loses energy (e.g., a massless

particle is redshifted). By repeating this cycle, one can further decrease the amplitude of the

trapped eigenstate; colloquially speaking, the particle “evaporates” from the potential well.

To illustrate the evaporation effect numerically, we solve the two-particle two-component

Schrödinger equation in the mass basis,

i@t |mm(x1, x2, t)i = (H free + H
grav + V ) |mm(x1, x2, t)i . (11)

Here the free particle Hamiltonian,

H
free =

0

BB@

H
free
hh 0 0 0
0 H

free
hl 0 0

0 0 H
free
lh 0

0 0 0 H
free
ll

1

CCA (12)

satisfies energy conservation, where

H
free
hh = �@

2
x1x1

/2mh � @
2
x2x2

/2mh,

H
free
hl = �@

2
x1x1

/2mh � @
2
x2x2

/2ml ��m,

H
free
lh = �@

2
x1x1

/2ml � @
2
x2x2

/2mh ��m,

H
free
ll = �@

2
x1x1

/2ml � @
2
x2x2

/2ml � 2�m.

Gravity enters via

H
grav =

0

BB@

H
grav
hh 0 0 0
0 H

grav
hl 0 0

0 0 H
grav
lh 0

0 0 0 H
grav
ll

1

CCA , (13)
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where

H
grav
hh = mh�(x1) + mh�(x2),

H
grav
hl = mh�(x1) + ml�(x2),

H
grav
lh = ml�(x1) + mh�(x2),

H
grav
ll = ml�(x1) + ml�(x2),

where we chose a model attractive potential with exponential screening, �(x) = �0e
�(x/xg)2(1+

(x/xg)2)�1, where �0 < 0 determines its depth and xg sets its size (xg ⇠ 4 in computa-

tional units). The interaction potential is given by Eq. 8. Interactions of particles occur via

a �-function potential, i.e., V↵↵, V↵�, V�� / �(x1 � x2), which is numerically represented by

V0 e
�[(x1�x2)/xv ]2(1 + [(x1 � x2)/xv]2)�1, where V0 > 0 and xv ⇠ 0.005; the actual shape of

V (x1 � x2) does not significantly affect the results so long as xv is small enough. The relative

strengths are chosen to be V↵↵ : V↵� : V�� = 2 : 1 : �2 and the mixing angle is ✓ = ⇡/6.

Finally, ml ⇡ mh as in the degenerate WIMP dark matter scenario.

The exact numerical solution of the Schrödinger equation of a mixed particle is shown in

Fig. 2 in the main text. It represents the space-time diagram of the probability density of a

heavy mass eigenstate of particle 1 (cyan) interacting with a light mass eigenstate of particle 2

(yellow). Both mass eigenstates are initially gaussian wave-packets trapped in the gravitational

potential, which is localized between x ⇠ �4 and +4 (in computational units). In each colli-

sion, forward and reflected wave packets of all possible mass eigenstates are produced. Light

mass eigenstates participating in and/or resulting from conversions escape to infinity. Fig. 7

shows the total probability of finding particles inside the gravitational potential (which is equiv-

alent to the expectation value of the mass trapped in it). One sees that a light mass eigenstate

is produced in each collision (t ⇠ 0.2 � 0.3 and t ⇠ 1.3 � 1.4) at the expense of the heavy

eigenstate. Later, the light mass eigenstate escapes, thus decreasing the total mass inside.
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di↵erent velocities and separate from each other rapidly.
(This is quite di↵erent form the relativistic case in which
all eigenstates propagate nearly at the speed of light and
it may take enormous time for them to separate, hence
the plane wave approximation is commonly used.) There-
fore, fairly soon, a mixed particle becomes a collection
of spatially separated mass eigenstates which can inter-
act with other particles independently. Apparently, an
ensemble of non-relativistic flavor-mixed particles is, in
most cases, an ensemble of individual mass eigenstates.
Therefore, it is very natural to investigate the evolu-
tion of such an ensemble in the mass basis rather than
the flavor basis, which is usually used. The interaction
matrix, however, is non-diagonal in the mass basis and
o↵-diagonal terms represent transitions between di↵erent
mass eigenstates. Should the mass eigenstates overlap
to represent a particular flavor, these o↵-diagonal cou-
plings ‘balance’ transitions of mass eigenstates into each
other precisely to produce the scattered particle in a fla-
vor eigenstate again. If, however, an individual mass
eigenstate interacts, there is no such a ‘balance’, so new
(absent) mass eigenstates are produced. Thus, one mass
eigenstate can be converted into others. Such a process
is of primary interest to us.

Here we consider a simple model of stable two-flavor
particles. We will interchangeably denote flavor eigen-
states as |f↵i and |f�i or as just ↵ and �, whenever
it’s not confusing. Since masses of the mass eigenstates
are di↵erent, we refer to them as heavy and light eigen-
states, hence ml < mh. Thus, similarly, the mass eigen-
states are denoted as |mhi and |mli or as just h and l.
A two-component flavor-mixed particle is described by a
two-component wave-function, which representations in
the flavor and mass bases are related via a 2⇥ 2 rotation
matrix, U , where ✓ is the mixing angle, i.e.,

✓
↵

�

◆
=

✓
cos ✓ sin ✓
� sin ✓ cos ✓

◆✓
h

l

◆
. (1)

Fig. 1 illustrates such a particle. The bold red and
blue curves represent heavy and light mass eigenstates
assumed to have gaussian wave-packets, as in Eq. (26),
and thin cyan and magenta curves are the corresponding
flavor eigenstates; flavor oscillations occur where mass
eigenstates overlap.

Because each interaction involves two flavor-mixed par-
ticles, the system is described by a two-particle wave-
function, which has four components in the flavor and
mass bases, namely

|ffi ⌘

0

B@

↵↵

↵�

�↵

��

1

CA ⌘

0

B@

↵1↵2(x1,x2, t)
↵1�2(x1,x2, t)
�1↵2(x1,x2, t)
�1�2(x1,x2, t)

1

CA , (2)

and

|mmi ⌘

0

B@

hh

hl

lh

ll

1

CA ⌘

0

B@

h1h2(x1,x2, t)
h1l2(x1,x2, t)
l1h2(x1,x2, t)
l1l2(x1,x2, t)

1

CA , (3)
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FIG. 1. Probability distributions of di↵erent eigenstates in
space. The bold curves (red and blue) represent heavy and
light mass eigenstates and thin curves (cyan and magenta) are
flavor eigenstates. Flavor oscillations are seen in the overlap
region.

respectively, where the subscripts denote particle 1 and
particle 2. Note that when the particles 1 and 2 are
far apart (before or after an interaction), a two-particle
wave-function is separable, being a direct product of one-
particle ones: |fifji = |fi(x1, t)i ⌦ |fj(x2, t)i, where i =
↵,�, j = ↵,� and |mpmqi = |mp(x1, t)i ⌦ |mq(x2, t)i,
where p = h, l, q = h, l. The two-particle flavor and
mass eigenstates are related as before,

|ffi = U2 |mmi , (4)

where the unitary matrix is

U2 ⌘ U ⌦ U =

0

B@

c
2

cs cs s
2

�cs c
2

�s
2

cs

�cs �s
2

c
2

cs

s
2

�cs �cs c
2

1

CA , (5)

in which c = cos ✓ and s = sin ✓. For simplicity, we
will restrict further study to one-dimensional motion of
particles.
The evolution of the system at hand is described by the

two-particle two-component Schrödinger equation. In
the mass basis, it reads

i~@t |mm(x1, x2, t)i = (H free+H
grav+V ) |mm(x1, x2, t)i .

(6)
Here the free particle Hamiltonian

H
free =

0

BB@

H
free
hh

0 0 0
0 H

free
hl

0 0
0 0 H

free
lh

0
0 0 0 H

free
ll

1

CCA (7)

satisfies energy conservation, where

H
free
hh

= �~2@2
x1x1

/2mh � ~2@2
x2x2

/2mh,

H
free
hl

= �~2@2
x1x1

/2mh � ~2@2
x2x2

/2ml ��mc
2
,

H
free
lh

= �~2@2
x1x1

/2ml � ~2@2
x2x2

/2mh ��mc
2
,

H
free
ll

= �~2@2
x1x1

/2ml � ~2@2
x2x2

/2ml � 2�mc
2

eigenstates are related as before, |ffi = U2 |mmi, where the unitary matrix is

U2 ⌘ U ⌦ U =

0

BB@

cos2
✓ � cos ✓ sin ✓ � cos ✓ sin ✓ sin2

✓

cos ✓ sin ✓ cos2
✓ � sin2

✓ � cos ✓ sin ✓

cos ✓ sin ✓ � sin2
✓ cos2

✓ � cos ✓ sin ✓

sin2
✓ cos ✓ sin ✓ cos ✓ sin ✓ cos2

✓

1

CCA (6)

The interaction matrix is diagonal in the flavor basis,

Ṽ =

0

BB@

V↵↵ 0 0 0
0 V↵� 0 0
0 0 V�↵ 0
0 0 0 V��

1

CCA , (7)

where V�↵ = V↵� for indistinguishable particles. In the mass basis, we have

V = U
†
2 Ṽ U2 =

0

BB@

A E E D

E C D F

E D C F

D F F B

1

CCA , (8)

where

A = 1
8 [3V↵↵ + 2V↵� + 3V�� + 4(V↵↵ � V��) cos 2✓ + (V↵↵ � 2V↵� + V��) cos 4✓] ,

B = 1
8 [3V↵↵ + 2V↵� + 3V�� � 4(V↵↵ � V��) cos 2✓ + (V↵↵ � 2V↵� + V��) cos 4✓] ,

C = 1
8 [V↵↵ + 6V↵� + V�� � (V↵↵ � 2V↵� + V��) cos 4✓] ,

D = 1
4 [V↵↵ � 2V↵� + V��] sin2 2✓,

E = �1
4 [V↵↵ � V�� + (V↵↵ � 2V↵� + V��) cos 2✓] sin 2✓,

F = �1
4 [V↵↵ � V�� � (V↵↵ � 2V↵� + V��) cos 2✓] sin 2✓,

Since trace is invariant under a unitary transformation, Tr(V ) = V↵↵ + 2V↵� + V��; also useful

is
P

i,j V
2
ij = V

2
↵↵ + 2V 2

↵� + V
2
�� .

The physics represented by the V -matrix is easy to understand. There are four different

interaction combinations (input channels): hh ! . . . , hl ! . . . , lh ! . . . , and ll ! . . .

(although the states hl and lh are identical for indistinguishable particles by symmetry, we
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Schrödinger equation

Technical: 2-comp 2-particle dynamics

scattering conversion
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Substructure 2cDM physics
Core heating does not change halo mass.  
Thus, SIDM without baryons cannot resolve the satellite problem.

MVM, ArXiv 2000; J Phys A 2010; JCAP 2014

"kick" velocity:  ½mv2kick ~ Δmc2
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Substructure in simulations
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Core-cusp 2cDM physics

collisional (inelastic) heating 
+ temperature equilibration
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Core formation via collisions. Self-Interacting DM (SIDM):  Spergel & Steinhardt, PRL 1999

CDM, collisionless halo profile



Core-cusp in simulations
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FIG. 3. Density profiles of 120 well-resolved dark halos for the classical ⇤CDM (left panel) and 2cDM (middle panel) models.
The formation of less cuspy profiles is seen in 2cDM. The profiles are color-coded by the halo mass: red – most massive, blue
– less massive. The right panel shows the averaged CDM (dashed) and 2cDM (solid) profiles obtained by stacking the profiles
within a narrow, ⇠ 30%, mass range around 2⇥1013M� (red), 4⇥1012M� (green) and 8⇥1011M� (blue). The inset shows six
2cDM individual halo profiles with masses between 2⇥ 1013M� and 1.7⇥ 1013M� for 2cDM. The order of magnitude variance
in the central density in the 2cDM model makes the stacked profiles of limited use.
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FIG. 4. Histograms of the slopes of the inner density profiles
of the halos shown in Fig. 3. Whereas the CDM profiles show
a cusp r↵ with ↵ ⇠ �0.8 . . .�1 consistent with earlier studies,
the 2cDM profiles are much shallower: ↵ ⇠ �0.2 . . .� 0.6.

spectrum (unlike WDM); all the changes occur in the
nonlinear stage. The halo evaporation proceeds slowly
over the Hubble time. Therefore, dwarf halos should form
at early times and can accrete gas and form stars, which
can increase the metallicity of the gas over time. We can
speculate that the metal-enriched gas and stars will grad-
ually become unbound from the weakening gravitational
potential of the dwarf halos. This process should thus en-
rich the intergalactic medium with metals, which would
mimic the e↵ect of supernova feedback. Since not all the
small halos are evaporated, the residual substructure can
be responsible for flux anomalies in gravitational lensing
observations.

Third, our simulations can formally be applicable
to any multi-component DM where transformations of
species is allowed, such as the ‘excited DM’. However,
these models face a severe problem: Why have the heavy
(or ‘excited’, etc.) particles survived in the early uni-
verse, but convert to lighter (or ‘ground-state’) species

now, when the density is much smaller? The flavor-mixed
2cDM model does not have this problem, because the m-
conversion cross-section in flat space-time is suppressed
by (�m/m)4 ⇠ 10�32 over it’s current value [56] and be-
comes large only during the structure formations, when
the mass eigenstates separate.

Fourth, the 2cDM theory is testable with direct detec-
tion experiments. Indeed, DM is a collection of h and
l eigenstates, which can convert into one another in in-
teractions with normal matter in a detector. We predict
that these conversions will result in energy ‘mismatch’
of ⇠ ±�mc2, i.e., the events will look like inelastic colli-
sions (i.e., both “exothermic” and “endothermic”, respec-
tively). Particularly, the down-conversions h ! l, which
are always kinematically allowed, can look like “exother-
mic” interactions due to the extra recoil energy. In con-
trast, the up-conversions l ! h result in the deficit of
energy, so they can occur only if the kinetic energy ex-
ceeds a threshold. Thus we also predict that the rate of
l ! h “endothermic-like” interactions can exhibit an an-
nual modulation, because vk is comparable to the velocity
of Earth around the Sun and of the Sun in the Galaxy.
The absolute value of �m is not constrained by our anal-
ysis, but only the ratio �m ' 10�8m. Thus, we can also
speculate that if inelastic e↵ects are indeed responsible
for DAMA and CoGeNT anomalies, then �m ⇠ keV.
Then the DM mass should be mX ⇠ 102 GeV, which is
close to the DM mass inferred from the GeV excess in
Fermi-LAT data [62, 63].

Fifth, 2cDM can be tested in indirect detection exper-
iments. For instance, the direct DM annihilation into
two photons results in a triplet line corresponding to the
annihilations in h + h, h + l and l + l channels. Thus,
the DM annihilation line can be a degenerate triplet at
E = mXc2 separated by the energy �E = 1

2�mc2.

MM, PRL 2014



Summary: theory confirmed

MVM+ : 2cDM simulations 

MVM+, PRL 2014; MNRAS 2019, 2022

Theory confirmed 
3990 K. Todoroki and M. V. Medvedev

Figure 2. Maximum circular velocity functions (velocity functions) for the classical CDM, SIDM, and various 2cDM models with σ 0/m = 1 cm2 g−1and (as,
ac) = (− 2, −2). Comparison of CDM (grey) and SIDM (dark blue) demonstrates that SIDM is unable to resolve the substructure and too-big-to-fail problems.
Red curves (solid, dashed, and dotted) show that the break in the velocity function is set by the parameter Vk, which is assumed to be 100 km s−1 for the
fiducial value. Comparison of the full 2cDM (solid red) and the 2cDM without elastic scatterings (light blue) confirms that elastic interactions play no role in
shaping the velocity function. The black and grey points with errorbars show the Local Group observational data from Klypin et al. (1999) and Simon & Geha
(2007), and the data in the green strip is taken from Klypin et al. (2015) for the abundance of field galaxies, with the number of haloes properly normalized as
in Medvedev (2014b).

power-law index ac rather than that of scattering as. This conclusion
can also be established by comparing the panels column by column,
for each column has the velocity functions behaving identically
regardless of the scattering power-law index as.

The cases with as = −4, which correspond to Coulomb-like
σ s ∝ 1/v4 scattering, have also been explored and they are presented
in the bottom (fourth) row. We stress that caution must be taken when
comparing as = −4 with the rest of the cases, especially for larger
σ 0/m values. As we noted earlier, the 2cDM numerical modelling
uses the rare binary collision approximation and assumes DM to
be weakly interacting. The direct consequence of as = −4 is that it
increases the number of DM interactions significantly in low-mass,
low-velocity haloes and puts them in a strongly interacting fluid-
like regime. The number of interactions also depends on σ 0/m,
which itself causes a similar but weaker effect compared to as.
Consequently, a combination of as =−4 and larger values of σ 0/m =
1 or 10 cm2 g−1amplifies the interaction probabilities dramatically
and cannot be reliably used for comparison with the other cases.

In addition to the strong influence of the conversion power-law
index ac described above, there are general features that are com-
monly seen in most of the 2cDM cases as follows.

(i) The magnitude of the DM cross-section σ 0/m determines the
degree of suppression of the number of satellites, hence offering a
solution to the SS and TBTF problems. In most cases, the larger
the cross-section, the stronger the velocity function suppression.
Interestingly, for ac being −1 and −2, the difference among various
cross-sections, σ 0/m, is rather minimal, indicating strongly non-
linear effects of DM interactions, gravitational collapse, accretion,
and hierarchical merging.

(ii) Many 2cDM σ (v) cases robustly reduce the halo counts
with Vmax ! 50 km s−1 (corresponding to Mvir ! 109.5 M⊙) to be
in agreement with observations. One of the key parameters, Vk,
which set the position of the break, is also set by observations
(Medvedev 2014b) to be Vk ∼ 50–100 km s−1. Such a value of Vk

corresponds roughly to "m/m ∼ 10−7–10−8.
(iii) Our results set constraints on the magnitude and velocity de-

pendence of the DM self-interaction cross-section. Namely, σ 0/m =
0.1 and 1 cm2 g−1appear to be consistent with observations for
most of the σ (v) models. The smaller cross-sections of σ 0/m =
0.01 cm2g−1 are still in agreement with observations for the two
cases of (−1, −2) and (0, −2). The larger cross-section of σ 0/m =
10 cm2 g−1 is ruled out because it tends to oversuppress dwarf haloes
and produces an even larger number of large-mass haloes than the
CDM counterpart. We should note that baryonic feedback effects
may play an additional important role in reducing the overall mag-
nitude of the velocity function. Therefore, we cannot rule out the
small cross-sections (σ 0/m = 0.01 cm2 g−1) unless we test 2cDM
with baryonic feedback. This will be explored in forthcoming stud-
ies.

Finally, to quantify our findings, we report the cumulative num-
ber of haloes, that is the value of the velocity function, evalu-
ated at Vmax = 15 km s−1 – well inside the observed data from
Simon & Geha (2007), hence avoiding possible observational bi-
ases. Table 1 summarizes and compares our simulation results
with observations. The σ (v) models that are consistent with ob-
servations within 1σ error bars are shown in bold. One sees that
the majority of the models fall within the observed uncertainty
range.
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Figure 1. The mean DM density profiles of 2cDM for dwarf haloes compared 
with selected models. The solid or dashed curve is the mean and the shade is 
1 σ standard deviation among the sample of five most-resolved haloes. The 
innermost radial range where numerical convergence fails based on two-body 
collision criteria is not shown. 
constraints (e.g. Kuzio de Naray & Kaufmann 2011 ). Here, we 
study whether the 2cDM physics alone could sufficiently explain 
the formation of cored density profiles in dwarf haloes without 
considering the presence and the effects of baryonic physics. 

To begin, we first present the halo density profiles and examine 
the internal structure based solely on the DM mass distribution. 
Subsequently, the parameters are constrained by applying the fit 
to the profiles and comparing it with observations. We then study 
the direct effects of the elastic scattering and mass conversion (or 
‘quantum e v aporation’ ef fects) of 2cDM in the DM velocity profiles 
as well as the DM velocity distribution function within a halo. The 
phase-space diagram is also shown to check the effects. Some of the 
selected set of parameters are further studied to see the effects of 
2cDM on the anisotropy radial profiles. Finally, in comparison with 
the CDM counterpart, we quantify the fraction of halo mass that can 
be lost or e v aporated by the 2cDM physics. 

A summary of the set of parameters explored in our dwarf 
simulations is the following: (i) σ 0 / m = 0.001, 0.01, 0.1, and 
1 cm 2 g −1 , (ii) ( a s , a c ) = ( X , Y ) where X , Y = −2, −1, 0, which 
gives nine cases in combination. The kick velocity V k = 100 km s −1 
is used throughout this work as the fiducial value, which corresponds 
to the mass de generac y of " m / m ∼ 10 −8 (see Section 1). Most of 
these parameters are chosen in accord with the results from Papers I 
& II. 
3.1 Density profiles 
Fig. 1 shows the mean DM halo density profiles for the selected 
models to highlight the effect of 2cDM. We chose (0,0) (i.e. no 
velocity dependence) with σ 0 / m = 0.1 cm 2 g −1 for all the cases 
shown: SIDM ( = elastic scattering only), 2cDM conv 

only , and 2cDM. 
The CDM is also shown for a comparison. The sample consists of 
the largest five haloes in the simulation box. It clearly shows that 
the mass conversion is the key physical process that successfully 
reduces the innermost density, as 2cDM conv 

only and the full 2cDM (both 
mass conversion and elastic scattering enabled) closely follow each 
other’s trend. Their profiles start to deviate from the CDM and SIDM 

Figure 2. DM halo density profiles of the 2cDM models with the mean and 
a 1 σ standard deviation compared with the CDM model (grey solid curve). 
The number of halo samples used was 5 (Table 1 ). The dash-dot, dotted, 
dashed, and solid curves represent σ 0 / m = 0.001, 0.01, 0.1, and 1 cm 2 g −1 , 
respectively. 
at ∼1 kpc with the chosen set of parameters, generally conforming 
to the observed range. 

To explore the parameter space further, Fig. 2 shows the compila- 
tion of profiles for all the other cases of 2cDM. We immediately see 
the prominent impact of a c on the formation of a cored density profile 
by simply comparing the columns, whereas that of a s is minimal by 
comparing the cases across the rows. In other words, the shape of 
the profile is predominantly determined by the strength of mass 
conversion rather than elastic scattering. This is particularly true for 
low-mass systems such as the dwarf haloes considered here. Their 
intrinsically small DM velocity has a significant effect on the cross- 
section that is inversely proportional to the velocity. 

The inv erse v elocity dependence of the interaction cross-section 
af fects the relati ve abundance of the DM species at large redshifts. 
This is so because of a relatively small DM velocity dispersion and 
larger density in high- z universe, which both enhance the DM self- 
interaction rates. Provided that the average DM particle velocity 
is smaller than V k , these self-interactions lead to the predominant 
conversion of the heavy species into the light ones, thus skewing the 
DM species composition well before the galaxy formation starts 
to take place. Note that in simulations, such a process leads to 
a quick formation of a new, self-consistent quasi-steady-state DM 
composition that is different from the initial 50:50 composition and 
with appropriate self-consistent velocity distribution functions of the 
species. 

In this study, we tested the cases with a strong velocity dependence 
of σ ∼ 1/ v 2 on mass conversion, denoted as ( X , −2) where X = −2, 
−1, or 0. Irrespective to the choice of the value for X , we found that 
these models with a c = −2 can cause a significant amount of mass 
conversion from heavy to light soon after the simulations started ( z 
> 90). To see this, Fig. 3 shows the ratio of the DM species (within 
the entire simulation box) as a function of the scale factor and its 
radial profiles (for the five largest haloes in the simulation) for a 
set of selected cases of (0,0) and (0, −2) to highlight the effect of 
the strong velocity dependence. With the small simulation box size 
used in this study, such early mass conversion quickly establishes a 
quasi-steady state of the DM species within the simulation box. As 
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Key: cross-sections

cross-sections

natural: as=ac

as = ac = 0 examples: "hard spheres'' (s-wave scattering)

as = ac = -1 annihilation-like

as = ac = -2 maximum conversion probability

as = -4 Rutherford-like 

JCAP06(2014)063

be conserved in all processes. The energy-momentum conservation in elastic scattering is
trivial, so we skip it. Conversions are di↵erent. Transitions in which a heavy eigenstate is
converted into a light one go with the increase of kinetic energy and thus have no threshold.
The opposite ones, where l is converted into h, have a threshold �mc

2 = (mh �ml)c2 and
can only occur if kinematically allowed, i.e., if the initial kinetic energy of the interacting
eigenstates is greater than the threshold.

Interestingly, there is a set of parameters, for which the S-matrix elements for elastic
interactions vanish identically but the conversion amplitudes (o↵-diagonal elements) do not.
Indeed, (i) the diagonal matrix elements, eq. (2.10), namely A, B, C contribute to the total
elastic scattering cross-section, �scat; (ii) the o↵-diagonal ‘mass exchange’ matrix elements
V23 = V32 = D also contribute to scattering in a statistical ensemble sense, if particles are
indistinguishable; and (iii) the remaining elements E, F and V14 = V41 = D contribute
to the total conversion cross-section, �conv. It is easy to see that one can have �scal = 0
simultaneously with �conv 6= 0. First, scatterings like lh ! lh and hl ! lh vanish if C =
D = 0, which requires that V↵� = V�↵ = 0, i.e., di↵erent flavors do not interact with each
other, and also that V�� = �V↵↵. Second, scattering channels hh ! hh and ll ! ll vanish
if A = B = 0, which additionally requires maximal mixing, ✓ = ⇡/4. Thus, the matrix V

becomes

V = V↵↵

0

BB@

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

1

CCA (2.11)

and V↵↵ is the only independent matrix element. Thus, Vscat = 0 (diagonal terms) and
Vexchange = 0 (i.e.,V23 and V32 terms, which play a role of scattering in a statistical ensemble)
identically and Vconv 6= 0, i.e., conversions can occur even if the gas of mixed particles has
vanishing elastic scattering S-matrix elements.

The S-matrix elements S(siti)(sf tf) are used to compute interaction cross-sections in

the usual way [3]. Appendix B briefly discusses the scattering standard theory and presents
some useful results. The scattered wave function can be expanded in angular momentum
(or, equivalently, the impact parameter) as

 =
1X

l=0

S
(l)

(siti)(sf tf)
Pl(cos ✓)Rl(r), (2.12)

where Pl are Legendre polynomials, Rl(r) are radial functions being the solution of the radial

part of the Schrödinger equation with a given scattering potential V (r) and S
(l)

(siti)(sf tf)
are

partial S-matrix amplitudes of the processes (siti) ! (sf tf ) for a given l. The elastic
scattering [i.e, (siti) ! (siti)] cross-sections and the conversion [i.e., (siti) ! (sf tf ), where
(siti) 6= (sf tf )] cross-sections are, see eqs. (B.8), (B.9),

�(siti)!(siti) =
⇡

k
2
i

1X

l=0

(2l + 1)
���1� S

(l)
(siti)(siti)

���
2
, (2.13)

�(siti)!(sf tf) =
⇡

k
2
i

1X
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where ki = pi/~ is the initial wave-number in the center of mass frame.
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2cDM σ(v)-simulations

as

ac

σ0/m
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0 & 0.001

over 120 different simulations 

+ across halo mass scales: dwarfs -- clusters

107 1015

simply increasing � cannot be the satisfactory solution while
preserving the � in the acceptable range (Rocha et al. 2013).

• The too-big-to-fail problem has been raised by Boylan-
Kolchin et al. (2011) that the MW is missing massive dark
subhaloes unlike ⇤CDM simulations predict (see also Moore
et al. 1999). This implies there has to be a mechanism that
suppresses the massive subhaloes, while preserving reduced
dark spheroidal populations in the low-mass end. A simple
SIDM does not seem to resolve this issue, but the velocity-
dependance of the DM cross section might directly address
the problem.

• To verify that the model is convincing enough to be a
good model, it needs to be tested on di↵erent mass scales;
(i) dwarfs (ii) MW-type and (iii) galaxy cluster. This needs
to be accompanied with multiple-diagnostics to check the
degree of agreement, which also works as ways to constrain
the cross-section that is the most important parameter to
be explored.

• Theoretical works seem to indicate that there is a gen-
eral consensus on the plausible range of �. Some authors
show �/m = 1 cm2g�1 produces inner density that are too
low to be in agreement with observations (e.g. Rocha et al.
2013) (studied spiral galaxies and galaxy clusters; 1010 -
1015M�). Randall et al. (2008) found a very similar con-
strain from their N-body merging bullet cluster simulations.

• Observations: Markevitch et al. (2004) estimated �/m

< 1 cm2g�1 from the Bullet Cluster based on the gravita-
tional lensing.

• DM self-interactions with baryons have been studied
by some authors. (Vogelsberger et al. 2014)-studied dwarfs
⇠ 1010M� with SIDM and velocity-dependent cross section,
ruling out 10cm2g�1] It seems that the consensus is that
the SIDM does not significantly alter the stellar concentra-
tion and distribution (although Vogelsberger finds that the
stellar mass distribution is slightly expanded with a reduced
density at the central region (< 1kpc) due to SIDM).

2 METHODS

• We implemented the self-interacting flavor-mixed two-
component DM (2cDM) model in the TreePM/SPH code
GADGET-3 Springel (2005). The numerical implementa-
tions closely follow what is presented in Medvedev (2014b)
with some upgrades and optimizations. The model’s detailed
theoretical foundations are described in Medvedev (2010,
2014a), and we only present the important aspects of the
models in this paper. In the SPH simulations, dark matter,
gas, and star are all represented as an ensemble of particles.
The gas is the only type of particle that interacts each other
both gravitationally and non-gravitationally through hydro-
dynamical forces. In this paper we present the results from
N-body simulations and do not consider gas and stars with
baryonic physics.

In the 2cDM model, two important physical processes are
considered: elastic scatterings and the mass eigenstate con-
versions. These core physics is what sets the 2cDM model
apart from the generic self-interacting dark matter (SIDM)
model. Within the framework of the 2cDM, the DM par-
ticles are assumed to consist of two mass eigenstates of h
(’heavy’) and l (’light’), and they are allowed to be converted
from one another through inelastic scattering without cre-

ating/destroying additional particles. Following Medvedev
(2014b), we assume the di↵erence in the two mass eigen-
states (�m ⌘ mh �ml) to be many orders smaller than the
mean DM mass as �m/m ⇠ 10�8. The initial total number
of each DM species is assumed to be 50:50 at the starting
redshift. The mass-conversion between h and l could occur
via multiple processes (hh ! ll, hh ! hl, hl ! ll, etc) by
conserving energy and momentum. The process of which
’heavy’ is converted into ’light’ e↵ectively causes ’evapora-
tion’ of the light DM particle — i.e., if the resultant ki-
netic energy carried by the light DM particle exceeds the
escape velocity of the associated gravitational potential, the
light DM particle breaks free and escape, leaving behind
its heavy counterpart in the potential. The other process in
which ’light’ is converted into ’heavy’ could also occur if it
is kinematically allowed.

• We use the Monte-Carlo technique for modeling the
DM self-interactions under the assumption of binary col-
lision that is appropriate for a system of weakly-interacting
particles. The probabilities of the interaction processes that
can occur during the time interval of �t are computed as

Pij!i0j0 = (⇢j/mj)�ij!i0j0 |vj � vi |�t ⇥(Ei0j0), (1)

where ⇢j/mj is the number density of the target particle,
� is the velocity-dependent DM cross-section, vj � vi is the
initial relative velocity of the interacting pair, and ⇥(Ei0j0)
is the Heaviside function that screens out kinematically for-
bidden processes with negative final kinetic energy Ei0j0 < 0.
Our implementation ensures that the probability of the vast
majority of the interactions is kept below ⇠0.001 for this
approximation to be valid.

• The velocity-dependent cross-section is parametrized as

�(v) =

⇢
�(v/v0)

as for scattering
�(v/v0)

ac for conversion
(2)

where the power a for scattering and conversion are inde-
pendently treated. It allows us to choose a range of possible
values for as and ac, and one of the main goals of this pa-
per is to explore the range of possibilities. Among all the
possibilities, (as, ac) = (�2,�2) is the most interesting case
based on the quantum mechanical argument that gives the
maximum conversion as follows. Consider the initial and fi-
nal states in a binary interaction. The cross section’s depen-
dency on the scattering and conversion can then be written
as

⇢
�s(v) = �i!i / |1� Sii|2 / 1/v2

�c(v) = �i!f / |Sif |2 / 1/v2
(3)

where S is the scattering matrix. By the unitarity condition
we require

P
|S|2 = |Sii|2 + |Sif |2 = 1 so that if we have

Sif = 1, which is immediately followed by Sii = 0, we ob-
tain the maximum �s and �c. It also has a nice symmetry
in respect of the velocity dependence. Excepting the spe-
cial case of (�2,�2), all the other possible cases require a
correction to the cross section in order to more accurately
describe the e↵ect of the detailed balance in the forward and
reverse momenta after the scattering:

�fi = (pf/pi)
2
�if . (4)

As a result, for the cases other than (�2,�2), we require to
multiply � in Eq. (1) with the pre-factor of � in Eq. (4).

2



Figure 3. DM halo density profiles.

Figure 4. Velocity dispersion profiles.
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subhaloes unlike ⇤CDM simulations predict (see also Moore
et al. 1999). This implies there has to be a mechanism that
suppresses the massive subhaloes, while preserving reduced
dark spheroidal populations in the low-mass end. A simple
SIDM does not seem to resolve this issue, but the velocity-
dependance of the DM cross section might directly address
the problem.

• To verify that the model is convincing enough to be a
good model, it needs to be tested on di↵erent mass scales;
(i) dwarfs (ii) MW-type and (iii) galaxy cluster. This needs
to be accompanied with multiple-diagnostics to check the
degree of agreement, which also works as ways to constrain
the cross-section that is the most important parameter to
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• Theoretical works seem to indicate that there is a gen-
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⇠ 1010M� with SIDM and velocity-dependent cross section,
ruling out 10cm2g�1] It seems that the consensus is that
the SIDM does not significantly alter the stellar concentra-
tion and distribution (although Vogelsberger finds that the
stellar mass distribution is slightly expanded with a reduced
density at the central region (< 1kpc) due to SIDM).

2 METHODS

• We implemented the self-interacting flavor-mixed two-
component DM (2cDM) model in the TreePM/SPH code
GADGET-3 Springel (2005). The numerical implementa-
tions closely follow what is presented in Medvedev (2014b)
with some upgrades and optimizations. The model’s detailed
theoretical foundations are described in Medvedev (2010,
2014a), and we only present the important aspects of the
models in this paper. In the SPH simulations, dark matter,
gas, and star are all represented as an ensemble of particles.
The gas is the only type of particle that interacts each other
both gravitationally and non-gravitationally through hydro-
dynamical forces. In this paper we present the results from
N-body simulations and do not consider gas and stars with
baryonic physics.

In the 2cDM model, two important physical processes are
considered: elastic scatterings and the mass eigenstate con-
versions. These core physics is what sets the 2cDM model
apart from the generic self-interacting dark matter (SIDM)
model. Within the framework of the 2cDM, the DM par-
ticles are assumed to consist of two mass eigenstates of h
(’heavy’) and l (’light’), and they are allowed to be converted
from one another through inelastic scattering without cre-

ating/destroying additional particles. Following Medvedev
(2014b), we assume the di↵erence in the two mass eigen-
states (�m ⌘ mh �ml) to be many orders smaller than the
mean DM mass as �m/m ⇠ 10�8. The initial total number
of each DM species is assumed to be 50:50 at the starting
redshift. The mass-conversion between h and l could occur
via multiple processes (hh ! ll, hh ! hl, hl ! ll, etc) by
conserving energy and momentum. The process of which
’heavy’ is converted into ’light’ e↵ectively causes ’evapora-
tion’ of the light DM particle — i.e., if the resultant ki-
netic energy carried by the light DM particle exceeds the
escape velocity of the associated gravitational potential, the
light DM particle breaks free and escape, leaving behind
its heavy counterpart in the potential. The other process in
which ’light’ is converted into ’heavy’ could also occur if it
is kinematically allowed.

• We use the Monte-Carlo technique for modeling the
DM self-interactions under the assumption of binary col-
lision that is appropriate for a system of weakly-interacting
particles. The probabilities of the interaction processes that
can occur during the time interval of �t are computed as

Pij!i0j0 = (⇢j/mj)�ij!i0j0 |vj � vi |�t ⇥(Ei0j0), (1)

where ⇢j/mj is the number density of the target particle,
� is the velocity-dependent DM cross-section, vj � vi is the
initial relative velocity of the interacting pair, and ⇥(Ei0j0)
is the Heaviside function that screens out kinematically for-
bidden processes with negative final kinetic energy Ei0j0 < 0.
Our implementation ensures that the probability of the vast
majority of the interactions is kept below ⇠0.001 for this
approximation to be valid.

• The velocity-dependent cross-section is parametrized as

�(v) =

⇢
�(v/v0)

as for scattering
�(v/v0)

ac for conversion
(2)

where the power a for scattering and conversion are inde-
pendently treated. It allows us to choose a range of possible
values for as and ac, and one of the main goals of this pa-
per is to explore the range of possibilities. Among all the
possibilities, (as, ac) = (�2,�2) is the most interesting case
based on the quantum mechanical argument that gives the
maximum conversion as follows. Consider the initial and fi-
nal states in a binary interaction. The cross section’s depen-
dency on the scattering and conversion can then be written
as

⇢
�s(v) = �i!i / |1� Sii|2 / 1/v2

�c(v) = �i!f / |Sif |2 / 1/v2
(3)

where S is the scattering matrix. By the unitarity condition
we require

P
|S|2 = |Sii|2 + |Sif |2 = 1 so that if we have

Sif = 1, which is immediately followed by Sii = 0, we ob-
tain the maximum �s and �c. It also has a nice symmetry
in respect of the velocity dependence. Excepting the spe-
cial case of (�2,�2), all the other possible cases require a
correction to the cross section in order to more accurately
describe the e↵ect of the detailed balance in the forward and
reverse momenta after the scattering:

�fi = (pf/pi)
2
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As a result, for the cases other than (�2,�2), we require to
multiply � in Eq. (1) with the pre-factor of � in Eq. (4).
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Figure 1. Dark matter density projection of the entire box of 3h�1Mpc side length.

Figure 2. The thick solid gray line is CDM. The dotted, dashed, solid, and dash-dot lines correspond to � = 0.01, 0.1, 1 and 10,
respectively. The black circles are directly from Klypin et al. (1999) and the gray squares are taken from Simon & Geha (2007) with the
normalized magnitude of the number of halos.

function’s dependency on the magnitude of the dark matter
cross-section. That is, the controlling agent for the circular
velocity function is the conversion power ac rather than the
scattering power as. This can also be established by com-
paring the panels column by column (again, except for the
bottom row and (-2,-2)), for each column behaves identically
regardless of the scattering power as.

• We also explored the three cases of as = �4 (the fourth
row).

In addition to the strong influence of the conversion power
ac, there are general features that are commonly seen in
most of the cases tested as follows:

• The dark matter cross-section determines the cumula-
tive number of satellites in general, while preserving the
slope of the function in the lower end. In most cases, the
function deviates more for a larger cross-section, especially
this is seen prominently for the cases with the conversion
power ac = 0 (the third row). This trend, however, seems to

4

(as, ac)

(Todoroki & MM, 2019,2020,2022)

consistent with 
observations



2cDM summary

• Substructure Problem 
• TBTF problem 
• Core/cusp problem across halo mass scales 

from dwarfs to clusters 
• Radial distribution of dwarfs (problem?)

σ(v) ~ 1(?)...0.1...0.01  
(as, ac) = (0,0), (-2,-2) -- natural  
Δm/m ~ 10–8   ⇔  vk ~ 50-100 km/s

MW Dwarf GC Theoretical
Model �0/m Density profile VF RHDF Density Profile Density Profile �-rs c-M relation preference

(�2,�2) 0.001 NO YES YES NO – – – YES
0.01 Baryon Baryon YES YES YES YES YES YES
0.1 YES YES YES NO – – – YES
1 YES YES YES NO – – – YES
10 NO YES YES NO – – – YES

(�1,�2) 0.001 NO YES YES NO – – –
0.01 Baryon YES YES NO – – –
0.1 YES YES YES NO – – –
1 YES YES YES NO – – –
10 NO YES YES NO – – –

(0,�2) 0.001 NO YES YES NO – – –
0.01 Baryon YES YES NO – – –
0.1 YES YES YES NO – – –
1 YES YES YES NO – – –
10 NO YES YES NO – – –

(�2,�1) 0.001 NO YES YES NO – – –
0.01 Baryon Baryon YES YES – – –
0.1 YES YES YES NO – – –
1 YES YES YES NO – – –
10 NO YES YES NO – – –

(�1,�1) 0.001 NO YES YES NO – – – YES
0.01 Baryon Baryon YES YES YES YES YES YES
0.1 YES YES YES NO – – – YES
1 YES YES YES NO – – – YES
10 NO YES YES NO – – – YES

(0,�1) 0.001 NO YES YES NO – – –
0.01 Baryon Baryon YES YES – – –
0.1 YES YES YES NO – – –
1 YES YES YES NO – – –
10 NO YES YES NO – – –

(�2, 0) 0.001 NO NO YES NO – – –
0.01 Baryon NO NO YES YES YES YES
0.1 YES Baryon YES YES ? YES YES
1 YES YES NO NO – – –
10 NO NO YES NO – – –

(�1, 0) 0.001 NO NO YES NO – – –
0.01 Baryon NO NO YES YES YES YES
0.1 YES Baryon YES YES ? YES YES
1 YES YES NO NO – – –
10 YES NO YES NO – – –

(0, 0) 0.001 NO NO YES NO – – – YES
0.01 YES NO NO YES YES YES YES YES
0.1 YES Baryon YES YES ? YES YES YES
1 YES YES NO NO – – – YES
10 NO NO YES NO – – – YES

SIDM 0.001 YES NO – – – – –
0.01 YES NO – – – – –
0.1 YES NO – – – – –
1 YES NO – – – – –
10 – – – – – – –

CDM – NO NO NO NO ? YES ?

Table 2. SIDM is (�2,�2)-based. (�4, X) are not shown here.

upper limit of the cross section value to be ⇠ 0.1 cm2 g�1.
This would also be the upper limit even when we consider
the baryonic e↵ect, namely the feedback e↵ect from the su-
permassive blackhole, or the active galactic nuclei (AGN),
since such a violent energetic feedback would only produce
a larger core in a smoothed out, shallower gravitational po-

tential created by the self-interaction processes of the 2cDM,
thus widening the discrepancy from the observations.

We have enough to show that a certain set of parameters
for 2cDM leave it a possibility as an alternative DM model
to the CDM model.
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Some 2cDM models*  
simultaneously resolve:

(Todoroki & MM, 2019,2020,2022)
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Substructure evaporation

Figure B1. Resolution test: 128-3 vs 256-3.

APPENDIX A: POWER-LAW FIT TO HALO CORE & HALO EVOLUTION

APPENDIX B: CONVERGENCE TEST

We compared two cases of the total number of particles N = 2563 and 1283 to check our model’s dependency on resolution.
The top panel in Figure B1 shows a good convergence in the two resolutions overall. That is, the cases with N = 2563 appear
to be just extensions of the N = 1283 cases without significantly altering the halo profiles. The clear exception is the cases
with �0/m = 10 where the discrepancy is significant. A simple explanation for the discrepancy is that the large cross-section
of �0/m = 10 essentially puts the dark matter-dark matter interactions in the fluid regime. Thus the assumption of the weakly
interacting nature of dark matter no longer applies for that particular case, and the higher resolution with a larger number
of particles dramatically increases the frequency of the interactions.

Unlike the good convergence seen in the profiles, the bottom panel shows the mass function appears to be somewhat
more prone to the resolution di↵erence only at the lower-mass end, though the discrepancy does not alter the general shape
of the mass functions.

APPENDIX C: MASS FUNCTION - ANALYTICAL

The e↵ect of conversions on mass and velocity functions.
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Thus, the virial quantities of the mass can be expressed as a function of �
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For the hydrostatic equilibrium,

dP
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+ ⇢g = 0, (C5)
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where P is the pressure and g is the gravitational acceleration. For the ISO we have P = nkBT = ⇢
kBT
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With Eq. (C1) and Eq. (C2), the above equation is reduced to
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For the ISO, i.e., � = 2, we have vth / R. In particular, if we are to define ⇢0 = ⇢crit ⇥ 200 and R ⌘ R200 = Rvir, then
Rvir / vth.

In the general case, the equation of state with the adiabatic index � reads P = ⇢
� with the proportionality constant .

After equating the exponent on the radial component r on both sides of the hydrostatic equation, we find

� =
2

2� �
, or � = 2(1� 1

�
). (C8)

Probing the cases other than the ISO, the NFW profile, for example, gives
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C1 Mass loss of a halo

The mass loss rate per unit volume can be written
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where Eq. (C1) and � = �0(v/v0)
a are used. If the velocity is approximated as v ⇠ vth, Eq. (C11) can be expressed in a
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Now the mass loss rate over the halo radial distance is given
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which is then integrated over the radial distance to yield

Ṁ =
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Thus, it is evident the mass loss rate can be largely determined by the core radius, rc. As such, if we integrate Eq. (C2) over
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assume profile hydrostatic balance yields
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Thus, it is evident the mass loss rate can be largely determined by the core radius, rc. As such, if we integrate Eq. (C2) over
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mass-loss per radius
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For the ISO, i.e., � = 2, we have vth / R. In particular, if we are to define ⇢0 = ⇢crit ⇥ 200 and R ⌘ R200 = Rvir, then
Rvir / vth.

In the general case, the equation of state with the adiabatic index � reads P = ⇢
� with the proportionality constant .
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integrate to yield the total halo mass-loss
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initial halo mass

A rough but reasonable approximation of rc/R ⇠ const allows us to write

Ṁ = �|A|M⇠ (C17)

where A is the proportionality constant and ⇠ = 1 + 2(a+ 1)/3. Based on the physically motivated values of a = 0,�1, and
�2, we have ⇠ > 0 in general. We then proceed as

dM
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= �Adt. (C18)

Integrating the above equation from the initial mass M0 to M over a finite time period t, we find
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Thus for a given f(M0), we have

f(M0) = f(M0(M, t)) ⌘ f(M, t). (C21)

Now the cumulative mass function can be obtained by

N(< M) =

Z M

1
f(M)dM (C22)

Since vth / Rvir and Mvir / R
3
vir for ISO, we have

N(< M) = N(< V
3) (C23)
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solution

final halo mass

indep. of halo shape (beta)

just a constant

where P is the pressure and g is the gravitational acceleration. For the ISO we have P = nkBT = ⇢
kBT
m = ⇢v

2
th, where

vth ' const, so that

v
2
th
d⇢

dr
+ ⇢

GM(r)
r2

= 0. (C6)

With Eq. (C1) and Eq. (C2), the above equation is reduced to

v
2
th =

4⇡G⇢0R
�

�(3� �)
r
2��

. (C7)

For the ISO, i.e., � = 2, we have vth / R. In particular, if we are to define ⇢0 = ⇢crit ⇥ 200 and R ⌘ R200 = Rvir, then
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Substructure evaporation

mapping of old to new
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Do halos evaporate completely?
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Figure 8. Normalized expectation values of the number of particles confined inside the gravitational
potential as a function of time, similar to figure 4. Any time a heavy mass eigenstate is converted
into a light mass eigenstate in a collision, soon after that the light mass eigenstate escapes to infinity.

Let us also assume that the system is “optically thin”, i.e., probability of particle inter-
action during one bounce is very small, so if a conversion occurred, the escaping eigenstate
experiences no further interactions and just leaves the system for good. We also assume
that only forward conversions (h ! l) can occur; inverse processes (l ! h) are kinemat-
ically forbidden. We consider indistinguishable particles and also assume that vk > vesc.
These assumptions are very natural for non-relativistic mixed particles such as neutrinos
(e.g., relic neutrinos from big bang) and some dark matter candidates because of their very
small interaction cross-sections.

The composition at t > 0 is described by nh(t) and nl(t), which are governed by equa-
tions

ṅh = �(�hhv)n
2
h � (�hlv)nhnl, (5.1a)

ṅl = �(�hlv)nhnl, (5.1b)

where we also assumed, for simplicity, that the particle density is uniform throughout the
system. Here v is the relative velocity of two interacting eigenstates which are comparable
for heavy and light eigenstates if mh ' ml. Here also �hh is the total cross-section of the
processes hh ! hl, lh, ll and �hl is the total cross-section of the processes hl, lh ! ll, hence
�hh / 2E2+D

2 and �hl / 2F 2, see eqs. (2.10), (2.16). Whereas the general solution to these
equations has no simple analytical solution, the asymptotic state can be found as follows.
From eqs. (5.1a), (5.1b):
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Let us also assume that the system is “optically thin”, i.e., probability of particle inter-
action during one bounce is very small, so if a conversion occurred, the escaping eigenstate
experiences no further interactions and just leaves the system for good. We also assume
that only forward conversions (h ! l) can occur; inverse processes (l ! h) are kinemat-
ically forbidden. We consider indistinguishable particles and also assume that vk > vesc.
These assumptions are very natural for non-relativistic mixed particles such as neutrinos
(e.g., relic neutrinos from big bang) and some dark matter candidates because of their very
small interaction cross-sections.

The composition at t > 0 is described by nh(t) and nl(t), which are governed by equa-
tions

ṅh = �(�hhv)n
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ṅl = �(�hlv)nhnl, (5.1b)

where we also assumed, for simplicity, that the particle density is uniform throughout the
system. Here v is the relative velocity of two interacting eigenstates which are comparable
for heavy and light eigenstates if mh ' ml. Here also �hh is the total cross-section of the
processes hh ! hl, lh, ll and �hl is the total cross-section of the processes hl, lh ! ll, hence
�hh / 2E2+D

2 and �hl / 2F 2, see eqs. (2.10), (2.16). Whereas the general solution to these
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dnh

dnl
=

�hh nh

�hl nl
+ 1. (5.2)

This equation has a solution:

nh(t)

nh,0
=

✓
nl,0/nh,0

1�R

◆✓
nl(t)

nl,0

◆
+

✓
1�

nl,0/nh,0

1�R

◆✓
nl(t)

nl,0

◆R

, (5.3a)

where R = �hh/�hl 6= 1, and

nh(t)

nh,0
=

nl(t)

nl,0


1 +

nl,0

nh,0
ln

✓
nl(t)

nl,0

◆�
, (5.3b)

– 14 –

solution

JCAP06(2014)063

heavy

light

total

0.0 0.2 0.4 0.6 0.8
0.0

0.5

1.0

1.5

2.0

time


pa
rti
cl
es
in
si
de
th
e
po
te
nt
ia
l

Figure 8. Normalized expectation values of the number of particles confined inside the gravitational
potential as a function of time, similar to figure 4. Any time a heavy mass eigenstate is converted
into a light mass eigenstate in a collision, soon after that the light mass eigenstate escapes to infinity.

Let us also assume that the system is “optically thin”, i.e., probability of particle inter-
action during one bounce is very small, so if a conversion occurred, the escaping eigenstate
experiences no further interactions and just leaves the system for good. We also assume
that only forward conversions (h ! l) can occur; inverse processes (l ! h) are kinemat-
ically forbidden. We consider indistinguishable particles and also assume that vk > vesc.
These assumptions are very natural for non-relativistic mixed particles such as neutrinos
(e.g., relic neutrinos from big bang) and some dark matter candidates because of their very
small interaction cross-sections.

The composition at t > 0 is described by nh(t) and nl(t), which are governed by equa-
tions

ṅh = �(�hhv)n
2
h � (�hlv)nhnl, (5.1a)

ṅl = �(�hlv)nhnl, (5.1b)

where we also assumed, for simplicity, that the particle density is uniform throughout the
system. Here v is the relative velocity of two interacting eigenstates which are comparable
for heavy and light eigenstates if mh ' ml. Here also �hh is the total cross-section of the
processes hh ! hl, lh, ll and �hl is the total cross-section of the processes hl, lh ! ll, hence
�hh / 2E2+D

2 and �hl / 2F 2, see eqs. (2.10), (2.16). Whereas the general solution to these
equations has no simple analytical solution, the asymptotic state can be found as follows.
From eqs. (5.1a), (5.1b):
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�hh nh
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+ 1. (5.2)
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if R = 1. We still do not know nh(t) and nl(t), but we note that h ! l conversions will occur
as long as nh(t) 6= 0. Therefore, asymptotically, when nh(1) ! 0, nl(1) ! nl,1 — some
constant value:

nl,1
nl,0

=


1�

nh,0

nl,0
(1�R)

� 1
1�R

, (5.4a)

which is valid for both 0  R < 1 and R > 1, and

nl,1
nl,0

= exp

✓
�
nh,0

nl,0

◆
, (5.4b)

if R = 1.
We now conclude that when the initial composition satisfies the inequality

nl,0

nh,0
 1�

�hh

�hl
, (5.5)

complete evaporation of mixed particles occurs, that is no particles will be left inside the
gravitational well, nh,1 = nl,1 = 0. Of course, the particles will be outside and traveling
to infinity as light mass eigenstates only. This means that the flavor composition will be
n↵ : n� = sin2 ✓ : cos2 ✓.

6 Conversions in Minkovsky space

It is also important to investigate interactions of the particles in free space when gravity
is negligible. This regime is relevant, for example, for the flavor-mixed dark matter in the
early universe before structure formation starts, and for the relic cosmological neutrinos when
they eventually become non-relativistic but still too hot to be confined by the gravitational
attraction of the the large scale structure.

As before, mass eigenstates of a mixed particle move as if they are normal particles with
certain (unequal) velocities and masses. The key di↵erence between free and gravitationally
confined particles is how their wave-packets spread with time. Depending on the shape
of the potential, the wave-packet of a trapped particle, generally, spreads slower than in
free space or even contracts (e.g., near the turning points). In this case, the separation of
mass eigenstates occurs rapidly and can be nearly perfect as t ! 1, so one can treat these
eigenstates independently. In contrast, the wave-packets widths of free particles grow linearly
with time and so does the separation between them. Therefore, the wave-packets of the two
mass eigenstates can remain partially overlapped as t ! 1, and the e↵ect may be very
significant depending on particle masses. Particle interactions in this case will involve both
mass eigenstates leading to suppression of mass-conversion amplitudes. For example, when
mass eigenstate wave-packets perfectly overlap, each particle is in a specific flavor eigenstate,
and interactions do not change particle flavors (and hence mass eigenstate composition) by
definition of an eigenstate.

Let us consider a non-relativistic mixed particle created at some moment of time t = 0 at
a position x0 in a certain flavor eigenstate. It is a coherent superposition of mass eigenstates
and each is described by a wave-packet, which we assume here to be gaussian:

 j(x) =
1

(2⇡�2
0)

1/4
exp


�
(x� x0)2

4�2
0

+ i
mjvjx

~

�
, (6.1)
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Let us consider a non-relativistic mixed particle created at some moment of time t = 0 at
a position x0 in a certain flavor eigenstate. It is a coherent superposition of mass eigenstates
and each is described by a wave-packet, which we assume here to be gaussian:

 j(x) =
1

(2⇡�2
0)

1/4
exp


�
(x� x0)2

4�2
0

+ i
mjvjx

~

�
, (6.1)

– 15 –

JCAP06(2014)063
heavy

light

total

0.0 0.2 0.4 0.6 0.8
0.0

0.5

1.0

1.5

2.0

time


pa
rti
cl
es
in
si
de
th
e
po
te
nt
ia
l

Figure 8. Normalized expectation values of the number of particles confined inside the gravitational
potential as a function of time, similar to figure 4. Any time a heavy mass eigenstate is converted
into a light mass eigenstate in a collision, soon after that the light mass eigenstate escapes to infinity.

Let us also assume that the system is “optically thin”, i.e., probability of particle inter-
action during one bounce is very small, so if a conversion occurred, the escaping eigenstate
experiences no further interactions and just leaves the system for good. We also assume
that only forward conversions (h ! l) can occur; inverse processes (l ! h) are kinemat-
ically forbidden. We consider indistinguishable particles and also assume that vk > vesc.
These assumptions are very natural for non-relativistic mixed particles such as neutrinos
(e.g., relic neutrinos from big bang) and some dark matter candidates because of their very
small interaction cross-sections.

The composition at t > 0 is described by nh(t) and nl(t), which are governed by equa-
tions

ṅh = �(�hhv)n
2
h � (�hlv)nhnl, (5.1a)

ṅl = �(�hlv)nhnl, (5.1b)

where we also assumed, for simplicity, that the particle density is uniform throughout the
system. Here v is the relative velocity of two interacting eigenstates which are comparable
for heavy and light eigenstates if mh ' ml. Here also �hh is the total cross-section of the
processes hh ! hl, lh, ll and �hl is the total cross-section of the processes hl, lh ! ll, hence
�hh / 2E2+D

2 and �hl / 2F 2, see eqs. (2.10), (2.16). Whereas the general solution to these
equations has no simple analytical solution, the asymptotic state can be found as follows.
From eqs. (5.1a), (5.1b):
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Message 2

Resolves core-cusp problem. 
Core size tells: 

σ0/m and indexes as , ac

PROFILES

core sizes from fits to simulated halos 

Wide parameter region allowed: 
σ(v) ~ 1...0.1...0.01 – consistent with all constraints 
Δm/m ~ 10–8   ⇔  vk ~ 50-100 km/s

(Todoroki & MM, 2019,2020,2022)
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DISTRIBUTION of  
 SATELLITES

Resolves substructure radial distribution 
Shape of function depends on all parameters

Wide parameter region allowed: 
σ(v) ~ 1...0.1...0.01 – consistent with all constraints 
Δm/m ~ 10–8   ⇔  vk ~ 50-100 km/s

(Todoroki & MM, 2019,2020,2022)
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direct detection

2cDM predictions

indirect detection
h, l
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γ-rays

“γ-ray annihilation  
line triplet” Eγ =mc2  ±  ½ Δmc2

example, 100 GeV  ±  ~ keV 

(MVM, JPhysA 2010; JCAP, 2014; PRL 2014)

Δm/m ~ 10–7 ...10–8

example, m ~ tens GeV,  ΔE ~ few keV 



2cDM vs other inelastic
2cDM looks like any multi-species/composite DM -- allows reactions Y→X

early universe "catastrophe"
excited, inelastic, exothermal, dark photon, boosted...

high-z low-z z=0 (now)

freeze-out: 
small σa 

X-Y decoupling: 
large σSI

Y abundance suppressed  
~ exp(ΔE/T)

Not a problem for 2cDM: conversions do not occur before 
structure formation starts (needed to separate mass states)
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Thus, in this case the overlap is negligible,

I(1) ⇠ (ml/mh)
1/2

⌧ 1. (6.14)

We have found that mass eigenstates can rapidly become well-separated in a gravita-
tional field, where they propagate along significantly di↵erent geodesics, or in flat space-time,
where the local gravitational fields are extremely weak, provided there masses are very dif-
ferent. However, if the mass eigenstates have degenerate masses and are propagating in
Minkovsky space, their wave-packets spread much more rapidly than their centroids move
apart. These mass eigenstates thus remain nearly perfectly overlapped at all times, I(1) ' 1.
Should it be identically unity, no conversions would occur. Due to the slight non-overlap,
the conversion amplitude is small but nonzero, being a factor of (�m/m)2 smaller than
the conversion amplitude in the case of complete separation of the wave-packets. Thus the
conversion cross-section in flat space-time, being proportional to the amplitude squared, is
much smaller than that when mass eigenstates are well-separated, e.g., in the presence of
su�ciently strong gravitational field, thus

�
fst
conv ⇠ (�m/m)4�conv, (6.15)

if �m ⌧ m and �
fst
conv ⇠ �conv otherwise.

7 Implications

There are interesting cosmological implications of the obtained results.
The first implication concerns with cosmological neutrinos. Neutrinos from the cosmic

neutrino background (CNB) have recently become non-relativistic; their thermal velocities
are vth ' 81(1+ z)(eV/m⌫) km s�1 [6], which is of the order of a few hundred to a thousand
km/s, hence they can be trapped in dark matter halos of large galaxies and galaxy clusters [7].
Scattering of neutrinos o↵ matter, though weak (but it can be greatly enhanced by coherent
e↵ects [8]), will result in their mass eigenstate conversions and escape.

Detectors on Earth, if they will ultimately be able to detect CNB neutrinos, should
see the fractional deviation from the uniform composition of order unity for upward vs.
downward going relic neutrinos. Indeed, the non-relativistic neutrino-nucleon cross-section is
�0 ' G

2
FE

2
⌫ ' 5⇥10�56(E⌫/eV)2 cm2 with GF being the Fermi constant of weak interactions.

Thus, for the heaviest species, assuming E
2
⌫ ' �m

2
23 ' 0.0027 eV2, we have �0 ' 1.4 ⇥

10�58 cm2. The e↵ect of coherent scattering increases the cross-section tremendously [8]:
�⌫ ' �0Z

2
N

2, where Z is the charge of atomic nuclei, N ' nV� is the number of nuclei in the
volume V� ' (4⇡/3)�3

dB, n is the number density of nuclei and �dB = h/(m⌫vth) ⇠ 0.5 cm
is the neutrino de Broglie wavelength at z = 0 (note, it is independent of m⌫ for CNB
neutrinos). For Earth, Z ' 25, n ' 1023 cm�3, so the CNB neutrino cross-section in Earth is
�CNB ' 2⇥10�10 cm2. The characteristic number density of the coherent scatterers in Earth
is n� ' 1/V� and the typical distance neutrinos travel in Earth is its diameter, d ' 109 cm,
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2cDM model parameters

matrix elements

Theory

mass degeneracy

what about σ(v) ?

Vαα , Vαβ , Vββ

mixing angle θ

masses of eigenstates m1 , m2

Simulations

Δm/m

cross-sections σe/m , σi/m

σ0(v/v0)ae, σ0(v/v0)ai

eigenstates are related as before, |ffi = U2 |mmi, where the unitary matrix is

U2 ⌘ U ⌦ U =

0

BB@

cos2
✓ � cos ✓ sin ✓ � cos ✓ sin ✓ sin2

✓

cos ✓ sin ✓ cos2
✓ � sin2

✓ � cos ✓ sin ✓

cos ✓ sin ✓ � sin2
✓ cos2

✓ � cos ✓ sin ✓

sin2
✓ cos ✓ sin ✓ cos ✓ sin ✓ cos2

✓

1

CCA (6)

The interaction matrix is diagonal in the flavor basis,

Ṽ =

0

BB@

V↵↵ 0 0 0
0 V↵� 0 0
0 0 V�↵ 0
0 0 0 V��

1

CCA , (7)

where V�↵ = V↵� for indistinguishable particles. In the mass basis, we have

V = U
†
2 Ṽ U2 =

0

BB@

A E E D

E C D F

E D C F

D F F B

1

CCA , (8)

where

A = 1
8 [3V↵↵ + 2V↵� + 3V�� + 4(V↵↵ � V��) cos 2✓ + (V↵↵ � 2V↵� + V��) cos 4✓] ,

B = 1
8 [3V↵↵ + 2V↵� + 3V�� � 4(V↵↵ � V��) cos 2✓ + (V↵↵ � 2V↵� + V��) cos 4✓] ,

C = 1
8 [V↵↵ + 6V↵� + V�� � (V↵↵ � 2V↵� + V��) cos 4✓] ,

D = 1
4 [V↵↵ � 2V↵� + V��] sin2 2✓,

E = �1
4 [V↵↵ � V�� + (V↵↵ � 2V↵� + V��) cos 2✓] sin 2✓,

F = �1
4 [V↵↵ � V�� � (V↵↵ � 2V↵� + V��) cos 2✓] sin 2✓,

Since trace is invariant under a unitary transformation, Tr(V ) = V↵↵ + 2V↵� + V��; also useful

is
P

i,j V
2
ij = V

2
↵↵ + 2V 2

↵� + V
2
�� .

The physics represented by the V -matrix is easy to understand. There are four different

interaction combinations (input channels): hh ! . . . , hl ! . . . , lh ! . . . , and ll ! . . .

(although the states hl and lh are identical for indistinguishable particles by symmetry, we
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be conserved in all processes. The energy-momentum conservation in elastic scattering is
trivial, so we skip it. Conversions are di↵erent. Transitions in which a heavy eigenstate is
converted into a light one go with the increase of kinetic energy and thus have no threshold.
The opposite ones, where l is converted into h, have a threshold �mc

2 = (mh �ml)c2 and
can only occur if kinematically allowed, i.e., if the initial kinetic energy of the interacting
eigenstates is greater than the threshold.

Interestingly, there is a set of parameters, for which the S-matrix elements for elastic
interactions vanish identically but the conversion amplitudes (o↵-diagonal elements) do not.
Indeed, (i) the diagonal matrix elements, eq. (2.10), namely A, B, C contribute to the total
elastic scattering cross-section, �scat; (ii) the o↵-diagonal ‘mass exchange’ matrix elements
V23 = V32 = D also contribute to scattering in a statistical ensemble sense, if particles are
indistinguishable; and (iii) the remaining elements E, F and V14 = V41 = D contribute
to the total conversion cross-section, �conv. It is easy to see that one can have �scal = 0
simultaneously with �conv 6= 0. First, scatterings like lh ! lh and hl ! lh vanish if C =
D = 0, which requires that V↵� = V�↵ = 0, i.e., di↵erent flavors do not interact with each
other, and also that V�� = �V↵↵. Second, scattering channels hh ! hh and ll ! ll vanish
if A = B = 0, which additionally requires maximal mixing, ✓ = ⇡/4. Thus, the matrix V

becomes

V = V↵↵

0

BB@

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

1

CCA (2.11)

and V↵↵ is the only independent matrix element. Thus, Vscat = 0 (diagonal terms) and
Vexchange = 0 (i.e.,V23 and V32 terms, which play a role of scattering in a statistical ensemble)
identically and Vconv 6= 0, i.e., conversions can occur even if the gas of mixed particles has
vanishing elastic scattering S-matrix elements.

The S-matrix elements S(siti)(sf tf) are used to compute interaction cross-sections in

the usual way [3]. Appendix B briefly discusses the scattering standard theory and presents
some useful results. The scattered wave function can be expanded in angular momentum
(or, equivalently, the impact parameter) as

 =
1X

l=0

S
(l)

(siti)(sf tf)
Pl(cos ✓)Rl(r), (2.12)

where Pl are Legendre polynomials, Rl(r) are radial functions being the solution of the radial

part of the Schrödinger equation with a given scattering potential V (r) and S
(l)

(siti)(sf tf)
are

partial S-matrix amplitudes of the processes (siti) ! (sf tf ) for a given l. The elastic
scattering [i.e, (siti) ! (siti)] cross-sections and the conversion [i.e., (siti) ! (sf tf ), where
(siti) 6= (sf tf )] cross-sections are, see eqs. (B.8), (B.9),

�(siti)!(siti) =
⇡

k
2
i

1X

l=0

(2l + 1)
���1� S

(l)
(siti)(siti)

���
2
, (2.13)

�(siti)!(sf tf) =
⇡

k
2
i

1X

l=0

(2l + 1)

����S
(l)

(siti)(sf tf)

����
2

, (2.14)

where ki = pi/~ is the initial wave-number in the center of mass frame.
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one can simplify by makings assumptions: then, we can have the most "minimal" model

initial composition set by mixing



Next decade:

A paradigm shift?

CDM Inelastic DM 

• Collisionless 
• Single species 
• Cold

• Self-interacting 
• Multi-species 
• Exothermal/Endothermal  
• "Non-minimal" 
• LSS evolution with z 
• Ly-alpha forest imprint 
• Early universe (?)

Need: • Data!  
❖ Cosmological observations  
❖ Indirect detection  
❖ Direct detection 

• Comprehensive realistic simulations w. baryons 
• Theory
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