Light Cone 2021: Physics of Hadrons on the Light Front November 29, 2021

QCD analysis of pion parton distributions

Wally Melnitchouk

collaborators: Patrick Barry (JLab) Chueng Ji (North Carolina State U) Nobuo Sato (JLab)

Outline

- Motivation(s) for studying pion PDF structure
- Consistent description requires simultaneously fitting pion PDFs to Drell-Yan and leading neutron electroproduction data
 - \rightarrow map out pion structure from low x to high x
 - \rightarrow constraints on gluon & sea quark PDFs at low x
- Extend analysis to incorporate transverse momentum
 - \rightarrow sensitivity to gluon PDF at high x
 - → pion TMDs ("3-d structure")
- Global QCD analysis with threshold resummation
 - \rightarrow consequences for high-*x* pion PDFs
 - \rightarrow supports ~ (1-x) behavior at large x

Sea of the proton

From text-books: perturbative QCD expected to generate symmetric $q\bar{q}$ sea via gluon radiation into $q\bar{q}$ pairs

 \rightarrow since *u* and *d* quarks nearly degenerate, expect flavor-symmetric light-quark sea $\overline{d} \approx \overline{u}$ Ross, Sachrajda (1979)

(Almost) from text-books: Thomas suggested that chiral symmetry of QCD ("low energy") should have consequences for antiquark PDFs in the nucleon ("high energy")

Thomas (1984)

Sea of the proton

First clear experimental support for $\bar{d} \neq \bar{u}$ came from measurement of Gottfried sum observed by NMC

$$\int_{0}^{1} \frac{dx}{x} (F_{2}^{p} - F_{2}^{n}) = \frac{1}{3} - \frac{2}{3} \int_{0}^{1} dx \, (\bar{d} - \bar{u})$$
$$= 0.235(26)$$

violation of "Gottfried sum rule"

Sullivan process — DIS from pion cloud of the nucleon

Sullivan (1972)

$$(\bar{d} - \bar{u})(x) = \int_{x}^{1} \frac{dy}{y} f_{\pi^{+}n}(y) \bar{q}_{v}^{\pi}(x/y)$$

 f
 $p \to \pi^{+}n$ splitting function ("flux factor"),
computed from chiral effective theory

Sea of the proton

a x dependence of $\overline{d} - \overline{u}$ asymmetry established in Fermilab E866 *pp/pd* **Drell-Yan experiment**

- → data can be well described within chiral EFT / pion cloud framework
- \rightarrow need to know pion PDF!

Barry, Sato, WM, C.-R. Ji PRL 121, 152001 (2018)

PDFs in the pion — Drell-Yan

PDFs in the pion difficult to study experimentally

most information has come from pion-tungsten
 Drell-Yan data (CERN, Fermilab)

 \rightarrow constrains valence PDFs at $x \gg 0$

 \dots but pion sea quark & gluon PDFs at small x unconstrained

PDFs in the pion — leading neutrons

ZEUS & H1 collaborations at HERA measured spectra of neutrons produced at very forward angles, $\theta_n < 0.8 \text{ mrad}$

- \rightarrow can data be described within Sullivan process?
- → first simultaneous fit performed by JAM Collaboration...

JAM global QCD analysis

- Theoretical framework
 - collinear factorization (NLO)
 - iterative Monte Carlo
 - Bayesian sampling of parameter space
- Traditional functional form for PDFs

$$f(x) = N x^{\alpha} (1-x)^{\beta} \underset{polynomial, neural net, ...}{\not }$$

iterate until convergence (posteriors = priors)

Bayesian master formulas" for expectation values and variances for \mathcal{O} with parameters \vec{a}

$$E[\mathcal{O}] = \int d^{n} a \,\mathcal{P}(\vec{a}|\text{data}) \,\mathcal{O}(\vec{a}) \qquad V[\mathcal{O}] = \int d^{n} a \,\mathcal{P}(\vec{a}|\text{data}) \left[\mathcal{O}(\vec{a}) - E[\mathcal{O}]\right]^{2}$$
probability distribution $\mathcal{P}(\vec{a}|\text{data}) \propto \mathcal{L}(\text{data}|\vec{a}) \pi(\vec{a})$
likelihood
function
$$\mathcal{L}(\text{data}|\vec{a}) = \exp\left[-\frac{1}{2}\chi^{2}(\vec{a})\right]$$

Measured LN differential cross section (integrated over p_T)

quality of fit depends on range of y fitted

expect more non-pionic contributions at larger y

Combined fit to HERA LN and Drell-Yan data

→ optimize χ^2_{dof} with maximum number of points that can be described

■ MC analysis combining pQCD with chiral EFT to fit πN Drell-Yan + leading neutron electroproduction data from HERA

- → significant reduction of glue and sea quark PDF uncertainties
- larger gluon fraction in the pion than without LN constraint

Transverse momentum dependence

- E615 also collected data differential in transverse momentum...
 never before included in global QCD analysis
 - → large- p_T photon requires hard gluon to recoil against, offering sensitivity to gluon PDF in pion at high x

→ what is range of applicability of pQCD description of p_T distribution?

Transverse momentum dependence

Transverse momentum dependence

Cao, Barry, Sato, WM PRD 103, 114014 (2021)

- → first time that one has been able to describe p_T spectra $(p_T > 2.7 \,\text{GeV})$ spectra in terms of collinear PDFs
- \rightarrow opens path to pion TMD studies

Pion TMDs

Monte Carlo extraction of pion TMDs

----> Patrick Barry

TMDPDFs

Pion PDFs with threshold resummation

 $x \rightarrow 1$ behavior of pion PDF is controversial: $\sim (1-x)$ or $(1-x)^2$?

■ Hard scattering coefficient function kinematically enhanced when $z \rightarrow 1$ because of (soft) gluon emissions

 \rightarrow effect of resummation on phenomenology?

Pion PDFs with threshold resummation

Two ways to construct Mellin moments of differential cross section

\rightarrow Mellin-Fourier

Mukherjee, Vogelsang (2006) Bolzoni (2006) Bonvini, Forte, Ridolfi (2011)

$$\sigma_{
m {\tiny MF}}(N,M) \equiv \int_0^1 {
m d} au au^{N-1} \int_{\log\sqrt{ au}}^{\lograc{1}{\sqrt{ au}}} {
m d}Y e^{iMY} rac{{
m d}^2\sigma}{{
m d} au{
m d}Y}
onumber \ au = Q^2/s \qquad \chi^0_{\pi,A} = \sqrt{ au} \, e^{\pm Y}$$

$$\sigma_{\rm DM}(N,M) \equiv \int_0^1 \mathrm{d}x_{\pi}^0 \, (x_{\pi}^0)^{N-1} \int_0^1 \mathrm{d}x_A^0 \, (x_A^0)^{M-1} \frac{\mathrm{d}^2 \sigma}{\mathrm{d}\tau \mathrm{d}Y}$$

Westmark, Owens (2017) Lustermans, Michel, Tackmann (2019)

For MF method, Fourier transform of threshold log $\delta(\hat{Y} - \frac{1}{2}\log(x_{\pi}/x_A))$ gives factor $\cos(M\log(1/\sqrt{z}))$

 \rightarrow expand cosine $\cos \rightarrow 1$

"expansion method"

 $\hat{Y} = Y - \frac{1}{2}\log(x_{\pi}/x_A)$ $z = Q^2/x_{\pi}x_AS$

 \rightarrow keep cosine factor

used in Aicher, Schafer, Vogelsang (2010) analysis

Pion PDFs with resummation

Pion PDFs with resummation

→ valence quarks give ~ 5% momentum fractions to gluons after resummation (for all methods)

resummation method	$\langle x angle_v$	$\langle x angle_s$	$\langle x \rangle_g$
NLO	0.53(2)	0.14(4)	0.34(6)
NLO+NLL cosine	0.47(2)	0.14(5)	0.39(6)
NLO+NLL expansion	0.46(2)	0.16(5)	0.38(6)
NLO+NLL double Mellin	0.46(3)	0.15(7)	0.40(5)

Barry, Ji, Sato, WM PRL (2021) arXiv:2108.05822

Pion PDFs with resummation

redistribution of x dependence

 \rightarrow effective exponent

 $\beta_v^{\text{eff}}(x,Q) = \frac{\partial \log |q_v(x,Q)|}{\partial \log(1-x)}$

 double Mellin method similar to fixed-order NLO

Outlook

JAM global QCD analysis allows simultaneous description of Drell-Yan $(p_T \text{ integrated and differential})$ and leading neutron electroproduction data in terms of universal set of pion PDFs

 \rightarrow map out pion structure from low x to high x

Successful extension to incorporate transverse momentum

- \rightarrow more precise data needed to constrain gluon PDF at high x
- \rightarrow extraction of pion TMDs

Global QCD analysis with threshold resummation

 \rightarrow suggests ~ (1-x) behavior at large x

Framework easily extended to kaon structure, when data available