"Path to Dark Sector Discoveries at Neutrino Experiments"

Overview: Status of non-oscillation Searches at the SBN Program

Vittorio Paolone (University of Pittsburgh)

- Exploit intense proton beams of the short baseline neutrino (SBN) experiments
- The excellent reconstruction capabilities of liquid argon time-projection chambers (LArTPCs)
- The SBN experiments are sensitive to dark sector models with masses in the 100s of MeV/c² mass range.
- The dark sector particles can be copiously produced in SBN beams, propagate into the detectors, and decay or scatter into visible signals.

Quick Review: Dark Sector Models

- Simplest way dark sector particles interaction with the standard model are via portal interactions:
 - → The dark sector particle mixes with a SM particle usually neutral
- These portals fall into these general categories.

 \rightarrow Higgs portal model: Scalar dark sector particles - interactions by mixing with the Higgs boson

 \rightarrow Heavy Neutral Lepton (HNL) models: Fermionic particles - interactions by mixing with neutrinos

 \rightarrow Heavy QCD axion models: Pseudoscalar particles - interactions by mixing with pseudo-scalar mesons

 \rightarrow Vector portal: Vector particles – interactions by mixing with the photon

B

Quick Review: Dark Sector Models cont.

• Higgs Portal Model:

 \rightarrow Mediator between the SM and dark sector model:singlet scalar particle (S) mixes with the Higgs boson.

→ Characterized by the mass of the scalar m_s and the mixing angle with the Higgs θ .

 \rightarrow Mixing angles down to order 10⁻⁴ can be probed by the SBN LArTPCs.

 \rightarrow In particular, scalars produced from NuMI kaons and decaying to e, μ , or pion pairs in ICARUS have the greatest projected sensitivity in the range m_s \approx 40 - 360 MeV

• Vector Portal:

Δ

 \rightarrow Typically produced in proton beam dump:

→ Pseudoscalar meson decay: Low mass dark photons may be efficiently produced through the decays of π^0 , η , $\eta^0 \rightarrow \gamma V$ or Proton bremsstrahlung: directly produced via bremsstrahlung, pp → pV X,

 \rightarrow Detected via scattering in detector: Cross section (10⁻³⁴ cm²), masses (few 100 MeVs)

Quick Review: Dark Sector Models cont.

• HNL Model:

5

 \rightarrow HNLs could couple to the other neutrinos through an extension of the PMNS matrix.

→ The SBN program can search for HNLs in a variety of masses from 20-30 MeV up to 388 MeV.

 \rightarrow HNLs can be coupled to all SM neutrinos: U_{$\alpha4$} (α = neutrino flavor)

→ The main contributing decay channels for the sensitivity to $U_{\mu4}$ coupled HNLs are:

- \rightarrow The e+e-v channel for the (20,150 MeV) mass region
- \rightarrow The $\nu\pi^{_0}$ channel for intermediate masses

 \rightarrow The $\mu\pi$ channel for the upper mass (~250 MeV to 388 MeV), including the dimuon channel $\mu+\mu-\nu.$

Quick Review: Dark Sector Models cont.

• Axion Model:

→ Decays of heavy ($M_a \sim GeV$) These QCD axions are not dark matter candidates but could solve the Strong CP problem

 \rightarrow In SBN, axions with a gluonic coupling would be produced by mixing with psuedoscalar mesons.

→ Axions would decay to a variety of final states: γγ, πππ, ππγ, as well as μ and e pairs if it has leptonic couplings.

 \rightarrow Axions can also interact with electrons in the detector.

 \rightarrow The axion has a mass $m_{\rm a}$ and a decay constant $f_{\rm a}$, both are free parameters.

 \rightarrow SBN will explore phase space where the mixing between the axion and SM particles is small, therefore they are long lived

SBN Overview

SBND Detector: LArTPC

- \rightarrow New detector: 4 x 4 x 5m³, 112 t active mass LAr
- → 2-m drift, 120 PMTs, 196 X-Arapuca photon detectors (precision timing)
- \rightarrow Installation complete and expected to be ready for filling in July 2023
- \rightarrow Expect to be operational in late 2023

ICARUS Detector: LArTPC

Steady data taking with BNB, NuMI beams from March 2021

- \rightarrow Two modules (T300) each is 19.6 x 3.6 x 3.9 m³; total(active) LAr mass 760t(476t)
- \rightarrow Drift distance 1.5 m. Electric field 500 V/cm -> drift time ~1 ms
- \rightarrow 3 signal wire planes (2 induction + 1 collection); total 53,248 wires
- \rightarrow Pitch and inter-plane distances: 3 mm; 400 ns sampling time
- \rightarrow Photon detector system: 360 TPB-coated PMTs: Precise timing (~1ns)
- \rightarrow Cosmic Ray Tagger: Close to \sim 4p coverage, 1100 m² plastic scintillator

g

MicroBooNE Detector: LArTPC

Ran from 2015-2020

Cyrostat

MicroBooNE Detector

- \rightarrow Active volume 85 tons of liquid argon: 2.6 x 2.3 10.4 m³
- \rightarrow 3 planes of wires with 3mm pitch
- \rightarrow 32 PMTs for light readout

LArTPC Capabilities

3D imaging charged particles: Spatial resolution $\sim 1 \text{ mm}^3$

Excellent EM energy resolution:

Many BSM signatures involve EM final states

COLLECTION View Stopping upward going hadron, L~43 cm

72 cm Wires

SBN: Access to both BNB (on-axis) and NuMI (off-axis) Beams

•NuMI Beam (off-axis@5.7°):

Sources of BSM particles in Neutrino Beams

Expected Beam Exposure

SBN Proposal: 6.6×10^{20} POT BNB

- → BNB will operate till LBNF long-shutdown ~Jan. 2027. Assuming design POT:
- \rightarrow ICARUS > 3X original SBN proposal
- → ICARUS+SBND > 2X original SBN proposal

NuMI: SBN runs parasitically off of NOvA

- \rightarrow ~900 kW recently
- $\rightarrow \sim 8 \times 10^{20}$ POT/year

Dark Sector Particle Production

- The BSM particles are generated from mixing or decays with standard model particles:
 - \rightarrow Mainly mesons generated in neutrino beams.

Higgs portal example:

- The flux of long lived mesons (pions and kaons) is "well" described by neutrino flux codes
- Other short lived mesons, such as η 's and π ⁰'s, are not considered by the neutrino flux but can also be a source new particles.
 - \rightarrow These mesons are simpler to deal with because they do not propagate through the target or focusing horns, but estimates of their production are unconstrained by measurements.
 - \rightarrow Large flux errors

SBN Beam(s) Characteristics

•8 GeV protons from Booster:

On-axis - Up to 5 Hz rep rate, 5 x 10^{12} protons/spill, 1.6 µs spill.

-0.2

 Detector v interaction rates: SBND: 0.25 Hz v, 0.03 Hz cosmic ICARUS: 0.03 Hz ν, 0.14 Hz cosmic

•120 GeV protons from MI:

•NuMI off axis(@5.7°) at ICARUS

•In excess of 6 x 10¹³ pot/spill, ~10 μ s spill,

•0.75 Hz rep rate

v interaction rate:

16

ICARUS: 0.014 Hz v, 0.08 Hz cosmic

Why use these Beams for BSM searches?

→ Direct detection ~< 1 GeV threshold</p>

→ Accelerator based searches have experienced a lot of both theoretical and experimental activity recently

→ The high intensity SBN beams have the potential for generating rare processes such as the production (via decays) of DM particles (portal)

→ In NuMI case being off-axis reduces backgrounds from standard neutrino interactions - Large component of flux produced from Kaon decays

Complimentary searches using both SBND detectors (BNB beam) and ICARUS (off axis NuMI beam)

- **SBND** Large acceptance to BNB Beam
- ICARUS Large target mass, off-axis location reduces backgrounds from standard neutrino interactions and parents dominated by kaons and strategically located relative to the NuMI absorber (→ generates decays at rest (KDAR))

Some Selected BSM Searches in Progress

- Heavy neutral leptons (HNLs)
- Light dark matter (DM)
- Dark neutrinos
- Heavy axions
- Millicharged particles

ICARUS: Vector Portal to the dark sector

- Production: p+p(n)→XX, Production dominated by neutral meson decay channel and bremsstrahlung
- DM detection channel (scattering off of target electrons) : $X \in X \in X$

• Event selection: Events with electron in final state with beam window and fiducial volume

 \rightarrow Use CRT cut to reject cosmic background

→ PMT-Timing analysis ($\sigma_{PMT} \sim 1$ ns) - Measure event time wrt beam bunches: Look for out of time scatters. Most effective for heaviest/LE DM candidates – true for most searches

ICARUS: Search for Higgs Portal Dark Scalar

•NuMI Production: Dark Scalars from Kaon Decay at Rest (KDAR) Signal and Kaon decay in flight (KDIF)

•Detection channel: KDAR, KDIF → Decays to e-e+

→ Assuming 6×10^{20} POT (~ 1 year of running) and 14% detection efficiency with zero backgrounds expect a factor or 2 improvement

Search for Higgs Portal Dark Scalar

 ℓ, π

HNL Searches

Search for Millicharged particles

Production: Directly or decay particles produced from target or absorber Detection method: Search for tracks with sub-MIP dE/dx deposition

Old technique – Emulsion example

LarTPCs: Modern Emulsion and Bubble chamber

Look for the "blips" signature : as a result of hard scattering Look for the "faint tracks": as a result of multiple soft scatterings. (Amy Flather and Daisy Kalra @SBND)

Search for Axion Like particles

- Production: Decay particles produced from target or absorber
 - → Axions in the BNB and NuMI beams are produced primarily by mixing with the psuedoscalar mesons π^0 , η , and η'
- → Flux will not be well predicted: Production of neutral mesons not well measured
- → Axion decay modes photonic, leptonic and hadronic

25

arXiv:2210.02462v1 [hep-ph]

$$\Gamma_{a \to \mu\mu} = \frac{c_{\ell}^2 m_a m_{\mu}^2}{8\pi f_a^2} \sqrt{1 - \frac{4m_{\mu}^2}{m_a^2}}.$$

Path to Accurate BSM Search Sensitivities

→ No detailed expected sensitivities for the searches discussed where shown - only rough estimates

 \rightarrow In general SBN is expected to be competitive In interesting phase regions

→ What is needed?

26

→ Event generator - basically in place: MeVPrtlGen generator is a modular event generator of Beyond Standard Model (BSM) for SBN

 \rightarrow BSM tools integrated into the MC (detector simulation) production

- → MC production presently ongoing almost completed (ICARUS)
- → Need to do the studies...

Summary

 \rightarrow Many BSM searches using both BNB and NuMI off-axis beams are being implemented and studied

 \rightarrow These measurements are expected to be competitive with other experiments

 \rightarrow In addition they are exploring less studied regions of BSM phase space

 \rightarrow Significant progress on software and analyses plans have been made.

 \rightarrow Need to generate properly simulated sensitivity limits

 \rightarrow BSM searches are an important effort of the SBN physics programs

 \rightarrow BSM physics has to be somewhere...

 \rightarrow Need to look in every unexplored region of phase space

