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Liquid Argon Time-Projection Chambers
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The modern Particle Imaging Detector

LArTPC are at the center stage                 
of beam 𝜈 physics in the US

Short Baseline Neutrino program
● μBooNE, ICARUS, SBND

DUNE long-baseline experiment
● Wire: DUNE FD
● Pixel: DUNE ND-LAr

Advantages:
● Detailed: O(1) mm resolution, 

precise calorimetry
● Scalable: Up to tens of kt

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)
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Liquid Argon Time-Projection Chambers
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Case study: Detector

The largest LArTPC in operation is ICARUS
● Surface-level detector
● 500 t fiducial mass (2 cryos, 4 TPCs)
● Physics: sterile neutrinos (MiniBooNE / 

Neutrino-4), cross sections, BSM

Event rates
● BNB beam: ~ 0.03 Hz neutrinos
● NuMI off-axis: ~ 0.015 Hz neutrinos
● In-time cosmic activity: ~ 0.25 Hz

Low-rate neutrino experiment with a 
significant cosmic background
ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)



Generic simulated dataset used for optimization and testing:
● Isotropic mix of 1 set of particles sharing a vertex + 5-9 localized single particles

○ Covers phase-space of neutrino interactions + cosmics, but…
○ … stays agnostic to physics → unbiased
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Green boxes: TPCs in Cryo. E

MPV

MPR particles

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

Liquid Argon Time-Projection Chambers
Case study: Datasets
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Generic simulated dataset used for optimization and testing:
● Isotropic mix of 1 set of particles sharing a vertex + 5-9 localized single particles

○ Covers phase-space of neutrino interactions + cosmics, but…
○ … stays agnostic to physics → unbiased

Specific datasets used for validation:
● Simulated BNB νμ and BNB νe + hand-scanned data events (C. Farnese et al.)

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

Liquid Argon Time-Projection Chambers
Case study: Datasets

Generic BNB νμ 
(+ cosmics)

BNB νe
(+ cosmics)
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Reconstruction in LArTPCs
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Challenges with LAr

Dense medium → Slow

Electron drift velocity O(1) mm/μs
● Long (O(1) ms) readout window
● Need light association for timing

High Z material → Messy  

Argon has a large nucleus (Z=18)
● Complicated nuclear physics
● Secondary interactions

ICARUS simulation

νμ

μ-

νμ(4 GeV) + Ar → Λ K0
L μ- π+ π0 π0

ICARUS simulation

Primary Secondary

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)



LArTPC ML effort started at SLAC by K. Terao
● Funded by DoE ECA and ML grants, many synergies with ML initiative
● Primary Goal: Implement full ML-based reco. chain for LArTPCs
● Experiments: µBooNE, ICARUS, pDUNE-SP, pDUNE-ND, DUNE-ND

Reconstruction in LArTPCs
Machine Learning Group at SLAC

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

ML Convener
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Reconstruction in LArTPCs
Machine Learning in Computer Vision (CV)

ML is the state-of-the-art in CV, i.e. extracting high level information from images
• ML revolutionized accuracy on image processing tasks
• Should leverage those techniques in HEP

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC) 8
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Photon

Reconstruction in LArTPCs
Neural Network Primer
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Input Parameters

Reconstruction in LArTPCs
Neural Network Primer
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What is F ? In ML, typically a neural network (NN), a universal function approximator

Reconstruction in LArTPCs
Neural Network Primer
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https://en.wikipedia.org/wiki/Universal_approximation_theorem


Machine Learning
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Brief Primer

How does it learn ? NN are fully differentiable. Define loss, optimize by gradient descent

12ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)
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Convolutional Neural Network (CNN) Graph Neural Network (GNN)

● Receptive field (kernel): pixel neighborhood
● Kernel shared in image: translation 

invariance

● Receptive field: graph neighborhood
● Agnostic to ordering: permutation invariant

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

Reconstruction in LArTPCs



νe, CC, 800 MeV
Input

Reconstruction in LArTPCs
Hierarchical feature extraction
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Image Classifier (CNN) νe, CC, 800 MeV
Input

Reconstruction in LArTPCs
Hierarchical feature extraction

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC) 15
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νe, CC, 800 MeVImage Classifier (CNN)
• What to do with > 1 interaction ?
• What if it fails ? Why ?
• What behavior if unknown interaction?

Input

Reconstruction in LArTPCs
Hierarchical feature extraction

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC) 16



Reconstruction in LArTPCs
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Hierarchical feature extraction

What is relevant to pattern recognition in a detailed interaction image?

Input

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)



Reconstruction in LArTPCs
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Hierarchical feature extraction

What is relevant to pattern recognition in a detailed interaction image?
1. Separate topologically distinguishable types of activity

Input 1

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)



Reconstruction in LArTPCs
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Hierarchical feature extraction

What is relevant to pattern recognition in a detailed interaction image?
1. Separate topologically distinguishable types of activity
2. Identify important points (vertex, start points, end points)

Input 1+2

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)



Reconstruction in LArTPCs
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Hierarchical feature extraction

What is relevant to pattern recognition in a detailed interaction image?
1. Separate topologically distinguishable types of activity
2. Identify important points (vertex, start points, end points)
3. Cluster individual particles (tracks and full showers)

Input 1+2 3

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)



Reconstruction in LArTPCs
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Hierarchical feature extraction

What is relevant to pattern recognition in a detailed interaction image?
1. Separate topologically distinguishable types of activity
2. Identify important points (vertex, start points, end points)
3. Cluster individual particles (tracks and full showers)
4. Cluster interactions, identify particle properties in context

Input 1+2 3 4

e-

p+

p+π+

1 GeV νe

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)



Reconstruction in LArTPCs
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Hierarchical feature extraction

What is relevant to pattern recognition in a detailed interaction image?
1. Separate topologically distinguishable types of activity
2. Identify important points (vertex, start points, end points)
3. Cluster individual particles (tracks and full showers)
4. Cluster interactions, identify particle properties in context

e-

p+π+

Pixel-level

Cluster-level

p+

431+2Input 1 GeV νe

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)
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Pixel-Level Feature Extraction
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Backbone

UResNet (UNet + ResNet + Sparse Conv.) as the backbone feature extractor

Input Features

Paper: PhysRevD.102.012005

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

https://arxiv.org/pdf/1505.04597.pdf
https://arxiv.org/pdf/1505.04597.pdf
https://github.com/NVIDIA/MinkowskiEngine
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.012005


Tomographic Reconstruction
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Ghost buster

In a wire TPC, we do not get 3D images, but rather 3 x 2D projections
● Find valid combinations of 2D hits: legitimate + artifacts (ghosts)
● Classify artificial space points as such: ghost removal (busting)

BNB νμ  only

ICARUS simulation ICARUS simulation

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)



Definition: (total length of gaps)/(length of track)
● Excellent track completeness with doublets
● Overall dQ/dx mostly flat w.r.t. angle

With doublets

Tomographic Reconstruction
Track completeness

ICARUS Simulation

25ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)



Semantic Segmentation
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Particle voxel class classification

Separate topologically different types of activity
● Tracks, Showers, delta rays, Michel electrons,  low energy blips
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BNB νμ  only

ICARUS simulation
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.012005


Point Proposal Network (PPN)
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Architecture

The Point Proposal Network 
(PPN) uses decoder features:
● Three CCN layers to 

progressively narrow ROI
● Last layer reconstructs:

○ Relative position to 
voxel center of active 
voxel

○ Point type
● Post-processing 

aggregates nearby points Paper: PhysRevD.104.032004

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.032004


Point Proposal Network (PPN)
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Points of interest

Narrow down a region proposal all the way to a point 
● Predict masks at different scales with UResNet, predict position in voxel
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ICARUS simulation

1 voxel = 3x3x3 mm3

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.032004


Graph-SPICE
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Architecture

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)



Dense Fragment Formation
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Spatial embedding transformation 

Transform coordinates to an space in which tracks are spatially separated
● Cluster track/shower fragments at this stage
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BNB νμ  only

ICARUS simulation

Fragments

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

https://arxiv.org/abs/2007.03083


Particle-Level Aggregation
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Graph Particle Aggregator (GrapPA)

Graph Neural Network: fragments/particles (nodes), correlations (edges)

Paper: PhysRevD.104.072004

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Aggregation
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Graph edge classification

Two aggregation steps: fragments → particles → interactions
● Select edges in the graph that minimize loss, find connected components
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4BNB νμ  only
Particles

ICARUS simulation
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Energy reconstruction 
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Traditional techniques

Played around with regression NNs, but…
● Range-based momentum estimation of tracks is hard to beat
● Calorimetric energy reconstruction of showers is also hard to beat

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

J. Mueller (CSU)
BNB selection

L. Kashur (CSU)
Pi0 analysis

ICARUS Simulation

Offset is an
overall scaling
factor (tiny 
fragments 
missing)



Aggregation
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Graph edge classification

Two aggregation steps: fragments → particles → interactions
● Select edges in the graph that minimize loss, find connected components
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Interactions

ICARUS simulation

BNB νμ  + Cosmics

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Particle Identification
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Graph node classification

Particle species much easier to infer in context
● Michel decays, secondary hadrons, shower conversion gaps, etc.

BNB νμ  primaries only
Photon
Electron
Muon
Pion
Proton

ICARUS simulation

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)



Particle Identification
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Graph node classification

Particle species much easier to infer in context
● Michel decays, secondary hadrons, shower conversion gaps, etc.

Generic dataset (particle bombs)

ICARUS simulation

Photon
Electron
Muon
Pion
Proton

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)



Primary Identification
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Graph node classification

Important to know which particle originate from the vertex
● Central to any exclusive analysis (study specific channels)

ICARUS simulation

Secondary
Primary

1μ2p1π0

BNB νμ  primaries only

Accuracy: 89%

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)



Reconstruction in LArTPCs
Full Reconstruction Chain Architecture

Paper: arXiv:2102.01033

End-to-end ML-based reconstruction chain 
● UResNet for pixel feature extraction, GrapPA for superstructure formation

Convolutional NN Graph NN

38ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

https://arxiv.org/abs/2102.01033


S->ee searches
Challenges

What do we need for this search?
● Shower ID, e/gamma separation

○ Previous analyses see p->e confusion, none in this ML scheme

39ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)



S->ee searches
Challenges

What do we need for this search?
● Shower ID, e/gamma separation

○ Previous analyses see p->e confusion, none in this ML scheme
● Reliable shower clustering (collinear showers are hard)

○ Need a dedicated study to see how far we can take it (J. Dyer)
○ Previous studies on pile-up indicate we do well at this

40ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

Generic simulation
6 showers in 10 m^3 

Labels Primaries
Reconstructed

Paper: 
PhysRevD.104.072004

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Low Energy Searches
Early days

Not much on this:
● Need to study blip reco. efficiency (secondary for oscillations)
● Some handle on low energy using Michel reconstruction as a benchmark

○ Currently much better than other techniques on the market

41ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

PhysRevD.107.092012

ICARUS simulation
L. Dominé (SLAC)
Thesis

https://urldefense.proofpoint.com/v2/url?u=https-3A__journals.aps.org_prd_abstract_10.1103_PhysRevD.107.092012&d=DwMFAg&c=gRgGjJ3BkIsb5y6s49QqsA&r=RGYnhLtYy875jR-Jw0vlvFqm6LIaPsgk6TIRoj_5cazKu1fir_r2CXJ-Iz5yWQcS&m=01c4ApJME-TePp4_xmOsK1g5THZw8Tb9i9pc6sLNfzmVVuzXqoP-_SYTHrZ9MM9s&s=LjH3l1J6uoZ2eN2H5AfPHHeokWBd1x7Jva_6b-HQkLI&e=
https://stacks.stanford.edu/file/druid:cc580th4200/PhD_Thesis_Draft_Laura_Domine_v6-augmented.pdf


A fair bit of work invested in speeding up the 
execution speed. On ICARUS:
● ~2 M input space points/event
● O(1) M edges in the aggregator graphs
● TPC reco: 2 s/event on an A100

Very cheap to run on large datasets:
● 1 year of ICARUS beam-on data can be 

reconstructed in 1 day with <200 A100s
● Perlmutter (NERSC): > 6000 A100s

Only scales with space point count
● Very cheap to run on DUNE-FD

e-

p+π+

Reconstruction in LArTPCs
Scalability

42ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

ICARUS Data
Entire reco. chain 
executed on 2 cryos



DeepLearnPhysics collaboration (ML techniques R&D)
● Public LAr simulation

○ Potential for open real data from prototypes
● Shared software dependencies with Docker/Singularity
● Open reconstruction software on GitHub
● Fully reproducible results

○ Readers have reproduced PhysRevD.102.012005

43HEP Institutional Review 2022

e-

p+π+

Reconstruction in LArTPCs
Open-source ecosystem

43ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

http://deeplearnphysics.org/
https://osf.io/bu4fp/
https://hub.docker.com/r/deeplearnphysics/larcv2
https://github.com/DeepLearnPhysics/lartpc_mlreco3d
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.012005


Many specific-purpose ML algorithms sprinkled in many places:
● BDTs are commonplace for S/B separation, particle type, etc.
● Some targeted ML-based effort to reconstruct the vertex location using CNNs
● Semantic segmentation in 2D in uBooNE (used in one of the LEE analyses)
● MPID algorithm based on CNNs in uBooNE (particle composition)
● CVN for image classification at the DUNE-FD

V. Hewes at U. Cincinnati leading another end-to-end effort based on GNNs from hits
● Early days, performance on semantic segmentation promising but worse
● Small networks (GNNs are shallower)
● Fast inference speed
● Nothing yet on clustering e-

p+π+

Other ML reconstruction efforts in LArTPCs
Very brief overview of the landscape

44ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

https://indico.jlab.org/event/459/contributions/11757/attachments/9214/13375/ACha_CHEP_May23.pdf
https://indico.jlab.org/event/459/contributions/11733/attachments/9550/13855/2023-05-09%20CHEP%20talk.pdf


So far, we have tackled the reconstruction challenge, what's next?
● Can we go beyond “most likely” prediction and quantify an uncertainty ?
● Can we mitigate differences between simulation and data ?
● Can we optimize detector modeling from data and remove the issue altogether ?
● Can we unfold detector effects directly ? Yes, learn inverse function automatically!
● Can we learn physics (generators) from data ? Yes and no

Non-Reconstruction ML Efforts in LArTPCs
Future prospects

45ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)



Conclusions
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Takeaways

End-to-end ML-based reconstruction chain 
mature and functional

● Used on ICARUS sim./data and DUNE-ND 
(high neutrino pileup) sim. today 

● Check out this ICARUS interactive 
reconstructed event !

In need of people to study performance on 
specific dark searches targets

● Promising early results on adjacent issues
● Many thanks to Jamie for her pioneering 

work in the ICARUS ML group

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

https://web.stanford.edu/~drielsma/event_icarus_full.html
https://web.stanford.edu/~drielsma/event_icarus_full.html
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GrapPA Aggregation Method

48

Edge selection procedure

What the network gives you:
● Likelihood that an edge connects two objects in the same group

Target:
● Find the optimal partition

Method:
● Iteratively add the most likely edge to optimize CE loss

Paper: PhysRevD.104.072004

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Inferred shower 
instances

49HEP Institutional Review 2022

Identify correlations between shower fragments, aggregate them, identify primaries
Paper:
• PhysRevD.104.072004
Energy resolution at 1GeV: 5.5 %

Simulation w/ 
perfect 
calorimetry

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC) 49

GrapPA Aggregation Method
Shower energy reconstruction

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004
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Identify correlations between shower fragments, aggregate them, identify primaries
Paper:
• PhysRevD.104.072004
Angular resolution at 1GeV: 2.1°

Inferred shower 
primaries

Simulation w/ 
perfect 
calorimetry

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC) 50

GrapPA Aggregation Method
Shower angle reconstruction

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004
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Goals of Uncertainty Quantification in Probabilistic Models:
• Calibration: Score p in [0,1] <=> probability p to be correct
• Error detection: Low confidence <=> large uncertainty

51ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

Uncertainty Quantification
Overview



Can we make the light simulation differentiable ?
• Photon library maps x = (x, y, z) to visibility in each PMT (number of photons)
• Learn photon library using scene representation (SIREN): F (x, θ) differentiable
Calibration process: bias in library (offset in the actual visibility): θ ′ = θ + δ
• Compare observed visibility to predicted visibility, use gradient descent to find θ ′ !

52ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

Uncertainty Quantification
Photon visibility map
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Basics of Domain Adversarial Networks:
• Penalized for producing features that are different between 

sim. and data

53ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

Domain Adversarial Training
Overview
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Basics of Domain Adversarial Networks:
• Penalized for producing features that are different between sim. and data

Shower voxels Track voxels

Michel voxels
Shower voxels

Number of iterations

W/o adversarial loss

With adversarial loss

W/o adversarial loss With adversarial loss

54ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

Domain Adversarial Training
Overview


