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Fermilab hosts and participates in a wide range of scientific physics programs
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Fermilab hosts and participates in a wide range of scientific physics programs

HL-LHC total data collection ~ 20 Billion GB
DUNE  uncompressed raw data 6 GB, compressed 2-3 GB 

supernova events ~140,000 GB/ 10kT (~ 1 minute of data)

Big Data Challenge



Next Gen LArTPCs     

1X 5X ~100X
#channels

1X ~ 5X ~ 500X
LAr Mass

Challenge - efficient, fast turnaround data processing to meet physics goals 

Bigger Detectors          more neutrino interactions expected
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33 GB/s 45 GB/s 5000 GB/s
Data rates
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DUNE Storage and Disk Requirements
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● Combination of disk cache and tape 
archiving

● Disk ~ 5 - 10 % of LHC experiment by 
end of 2030

● Tape 10-15% of  LHC experiment

● 2 physically separate copies of raw data  

Disk currently in use/available 
FNAL ~ 11/11 PB 
Other ~ 7.6/12.5 PB

DUNE Computing CDR

https://arxiv.org/pdf/2210.15665.pdf


Fermilab Resources Plans - Storage and Disk 
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Storage service – 
● Bulk disk 

dCache, Lustre (Wilson Cluster/LQCD), Ceph (not yet in 
production) 

● Tape/archival storage 
Enstore, CTA (not yet in production)

New Tape Library
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DUNE - Future Flagship Experiment @ Fermilab 
● One of the major physics goals 

○ study rare (off-beam) events at Far Detector

 

Near DetectorFar Detector

Requirement : efficient and continuous data processing
Expected data rate ~1.15 TB/s/ 10kT 



 Supernova Candidates 
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● Sensitive to neutrinos from a (relatively) 
nearby supernova
 

● Continuous detector readout for ~ 100s
 

●  ~ 140 TB in 100s  at current compression 
levels/ FD module 

Prelim. event reconstruction

source location accurate to < 5°

optical/near IR telescopes follow-up

Challenge → 4+ hours to transfer data 
on a dedicated 100 Gb/s network, 4 
hours processing time



 Supernova Candidate Processing 
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● Limited space and infrastructure (i.e. cooling) at far site  
→ no bulk processing on local farm

● 10,000 – 40,000 present-day CPUs needed for 
reconstruction → 4-8 hours
 -  HPC centers 

■ Concern → data transfer in and out
■ Entire workflow - stitching data, output of 

reco - failure modes - efficiency vs. accuracy 
trade off 

● Must be able to handle large input stream as well as 
output at similar rate
      



 Supernova Candidate Processing 
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Supernova Neutrino Events in LArTPC

Triggers Supernova Neutrino 
Interaction Simulations
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Supernova Neutrino Events in LArTPC

Triggers Supernova Neutrino 
Interaction Simulations



Realtime AI/ML trigger and tagging @ FNAL     
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muon candidate

proton 

candidate

e/𝞬 
showers

LArTPC - a sneak peek into the world of neutrinos
 A Fully Active Tracking Calorimeter

��

Online/Real-time 
Triggering and 
Tagging

Event 
Reconstruction

● FPGA trigger implementation

○ ~$3M project to explore 
physics-inspired neural nets (PINNs)
 

○ Designing efficient edge AI with physics 
phenomena

○ AI applications on the “Edge” in CMS, 
DUNE, and accelerator physics

https://www.energy.gov/science/articles/department-energy-announces-64-million-artificial
-intelligence-research-high

https://www.energy.gov/science/articles/department-energy-announces-64-million-artificial-intelligence-research-high
https://www.energy.gov/science/articles/department-energy-announces-64-million-artificial-intelligence-research-high


Realtime AI/ML trigger and tagging @ FNAL     
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● DUNE component focuses on efficient AI for identifying low-energy LArTPC interactions

● Low power and low latencies → FPGA implementation for inference

● Involves collaborators from Columbia, UChicago, and Duke

● Goal - demonstrate proof-of-concept in ICEBERG test facility at Fermilab

Calibration 
Ar39 and Michel electrons

supernova neutrino detection
other low-energy neutrino physics



 Supernova Candidate Processing 
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Supernova Neutrino Events in LArTPC

Triggers Supernova Neutrino 
Interaction Simulations

AI/ML - Low Energy Neutrino 
Interactions Reconstructions 



Computing Facilities - Wilson Cluster
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● Wilson Cluster available to all of FNAL either through experiments/departments or specific 
projects 

● Available GPUs range from K80s (100) to A100s (4); base OS is SL7 (Alma8/9 in future)

● More information https://computing.fnal.gov/wilsoncluster/

https://computing.fnal.gov/wilsoncluster/
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Computing Facilities - Elastic Analysis Facility
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● Jupyter Hub deployment with general CPU and 
GPU-enabled notebooks available

● Highly scalable, customizable, and replicable 
elsewhere

● GPUs are available through 
analytics-hub.fnal.gov (on-site or on VPN)

http://analytics-hub.fnal.gov/


Computing Facilities - Elastic Analysis Facility

20

● Jupyter Hub deployment with general CPU and 
GPU-enabled notebooks available

● Highly scalable, customizable, and replicable 
elsewhere

● GPUs are available through 
analytics-hub.fnal.gov (on-site or on VPN)

● Latest documentation is 
eafjupyter.readthedocs.io CVMFS also available

● Anyone with a services account can log in, but 
follow your experiment’s usual instructions

● Streaming with xrootd also works to access 
larger storage elements

http://analytics-hub.fnal.gov/
http://eafjupyter.readthedocs.io/


 Supernova Candidate Processing 

21

Supernova Neutrino Events in LArTPC

Triggers Supernova Neutrino 
Interaction Simulations
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● Galactic supernovae are rare (~1.6 / century)

● DUNE needs high-efficiency trigger → 1/month false positive rate

● Trigger design requires detailed interaction modeling
○ critical for interpreting future supernova observation 

arXiv:2303.17007

● Fermilab-maintained event generator: MARLEY
○ Physics models: Phys. Rev. C 103, 044604 (2021)
○ Implementation: Comput. Phys. Commun. 269, 108123 (2021)

● Event reconstruction techniques under development by DUNE and 
other experiments (e.g., MicroBooNE)

 Supernova Neutrino Interaction Simulations

Model of Argon Reaction 
Low Energy Yields

https://arxiv.org/abs/2303.17007
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.103.044604
https://www.sciencedirect.com/science/article/pii/S0010465521002356
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Event Generators and BSM Physics
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Simulations for Neutrino Beam Experiments



 

25

The GENIE Event Generator
● Primary beam neutrino interaction simulation for all 

Fermilab experiments

○ Developed by international collaboration
○ Primary focus 100 MeV to 10 GeV neutrinos, scope 

extends further in both directions

● Major contributions from Fermilab for version 3 release 
series

○ Eur. Phys. J. Spec. Top. 230, 4449 (2021)

● GENIE predictions key for interpreting experimental 
analyses

○ e.g., MicroBooNE's search for anomalous ve 
appearance

● March 2023 workshop at Fermilab discussed future 
development directions for GENIE and similar event 
generators

○ https://indico.fnal.gov/event/57388/

Phys. Rev. Lett. 128, 241801 (2022)

https://link.springer.com/article/10.1140/epjs/s11734-021-00295-7
https://indico.fnal.gov/event/57388/
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.128.241801
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The ACHILLES Event Generator Phys. Rev. D 107, 033007 (2023)

● New theory-driven event generator
○ Fermilab-led
○ Neutrinos, electrons, BSM

● Technical design borrows techniques from 
collider physics event generators

○ Applies these to neutrinos for the first 
time

● Example: Automated leptonic tensor
○ Phys. Rev. D 105, 096006 (2022)
○ Support wide range of BSM models without dedicated development work

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.107.033007
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.096006
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ACHILLES approach to automating the leptonic tensor
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A different take on frameworks 
than Collider approach 



 Meld @ FNAL 
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● DUNE’s current framework (art) originates from a collider-physics experiment, steeped in 
event-based concepts

● Meld - A project for exploring how to meet DUNE's framework needs

   Purpose of Meld - explore more flexible data organizations 



 Meld @ FNAL 
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Physics results are obtained by analyzing the data as a whole
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Physics results are obtained by analyzing the data as a whole

● A trigger record is not a simple structure

● Memory limitations of many computers prevent 
processing an entire trigger record

● The framework user must break apart the trigger 
record “by hand” and then reassemble it.



 Meld @ FNAL 
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● Challenge - Processing data from different runs in 
parallel 

● Framework must store and provide information at  
coarser level than just trigger record.

● Technologies exist for parallel processing (TBB, MPI, 
etc.), but they do not support hierarchical data 
groupings very well
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● Challenge - Processing data from different runs in 
parallel 

● Framework must store and provide information at  
coarser level than just trigger record.

● Technologies exist for parallel processing (TBB, MPI, 
etc.), but they do not support hierarchical data 
groupings very well
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Collider approach -  write physics data at 
the end of processing trigger record 

Aim to reduce a program’s memory usage, data 
should be written to a file during the processing of 
the trigger record



A Paradigm Shift in HEP
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● HEP faces unique high-throughput computing challenges 
from massive data rates 

● Advanced computing techniques 

○ Enable deeper insights and improve performance

○ Improve operational efficiency 

○ Ultimately accelerate time-to-physics and discovery



High Performance Computing (HPC) - Gen Z DOE Supercomputers    
● Future HEP Experiments -

○ Order of magnitude increase in data rate 

■ Data & processing complexity within existing 
frameworks

■ “Buy more CPUs” - not an option 

● Explore parallelism 

■ Future HPCs – CPUs + GPUs 

● fast turn around processing and regular raw data 
processing

● Code portability from CPU to GPU crucial

36



High Performance Computing - HEP CCE Efforts     
● HEP-CCE (Centre for Computational Excellence)        3 year pilot project funded by DOE

○ 6 Experiments, 4 National labs across US

○ Intensity, Energy and Cosmic Frontiers

● Goal -  Exploit features of HPCs efficiently 

○ Develop and test strategies to overcome HEP community wide computational challenges

■ PPS: Portable Parallelization Strategy
■ IOS:  I/O and Storage on HPC Platforms  
■ EG:   Event Generators 
■ CW:  Complex Workflow on HPC

37



38

High Performance Computing - HEP CCE Efforts     
PPS: Portable Parallelization Strategy IOS: I/O and Storage

● Investigate software portability solutions
○ Kokkos, OpenMP 

 
● Evaluate ease of porting - Porting, building, 

performance, code impact

Neutrino 
Generator

Particle 
Simulation

True ionization 
electrons

Pulses on TPC 
wires

● Investigate HDF5 as intermediate event storage 
for HPC processing

● HPC friendly Data Model : Experiment agnostic

https://www.anl.gov/hep-cce

● Parallel I/O of the HEP data using MPI (Message 
Parsing Interface) and HDF5 libraries 

1 2 3 4 5 6 7 8

MPI rank 0 MPI rank 1

1 2 3 4 5 6 7 8

1st parallel 
write

2nd parallel 
write

HEP-CCE

https://www.anl.gov/hep-cce


Computing Facilities - HEPCloud
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https://hepcloud.fnal.gov/

● Unified interface to Grid, Cloud, and HPC resources
 

● Currently used mainly to run CMS, NOvA, DUNE workflows on NERSC 
supercomputers

https://hepcloud.fnal.gov/


Computing Services Enabling 
Physics Discoveries 
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Computing Services
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Supporting local and remote users sharing resources across Fermilab and the 
Open Science Grid

Dan Bradley Mike Kirby

Distributed Disk Management



Computing Services
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Supporting local and remote users sharing resources across Fermilab and the 
Open Science Grid

Dan Bradley

Mike Kirby

Robert Illingworth



Computing Services
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● Support and develop 
○ common computing tools 
○  data monitoring tools
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Summary    
● Fermilab offers a wide range of services for experiments

● Big Data challenge for Next-gen HEP experiments 

○ A paradigm shift 

■ Hardware Accelerators such as FPGA, ASIC
■ High-Performance Computing (HPC) resources for data processing
■ Increasing AI/ML applications

●  Experience beyond ROOT 

○ Analysis facilities with python, Julia 

● Quest continues 

○ Computing R&D projects to address challenges 
○ Fermilab Frameworks Workshop June 5th- 7th

https://indico.fnal.gov/event/59872/


A Plethora of Tools to Support Neutrino Physics and HEP       

Thank you!
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Many Thanks to Steven Gardiner, Kyle 
Knoepfel, Ken Herner, Burt Holzman, Mike 
Kirby, Giuseppe Cerati, Mike Wang, Erica 

Snider, Andrew Norman, Robert Harris and 
everyone within CSAID  
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Back up
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Rob Illingworth



For More Details 
● Childers, Taylor, et al.  “Porting CMS Heterogeneous Pixel Reconstruction to Kokkos.” vCHEP 2021. 

arXiv:2104.06573v1. Slides. 
● Dong, Zhihua, et al.  “Porting HEP Parameterized Calorimeter Simulation Code to GPUs.” Frontiers in Big Data. 

arXiv:2103.14737v2. Slides.
● Kortelainen, Matti J., et al.  “Performance of CUDA Unified Memory in CMS Heterogeneous Pixel Reconstruction.” 

vCHEP 2021. Paper. Slides.
● Pascuzzi, Vincent R., Goli, Mehdi.  “Achieving Near Native Runtime Performance and Cross-Platform Performance 

Portability for Random Number Generation Through SYCL Interoperability.” arXiv:2109.01329
● Yu, Haiwang, et al.  “Evaluation of Portable Acceleration Solutions for LArTPC Simulation Using Wire-Cell Toolkit.” 

vCHEP 2021. arXiv:2104.08265v1. Slides.
● HEP-CCE Collaboration, Portability: A Necessary Approach for Future Scientific Software, Snowmass White Paper

https://www.anl.gov/hep-cce 
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HEP-CCE

https://arxiv.org/abs/2104.06573
https://anl.box.com/s/f80pjeh834vrv0z54qtj9f2tak2yeqag
https://arxiv.org/abs/2103.14737v2
https://indico.cern.ch/event/948465/contributions/4323701/attachments/2244954/3808352/FastCaloSim_for_vCHEP_2021_f.pdf
https://anl.box.com/s/zwnkpeklexv8970edv3opj7orfw5wbfg
https://anl.box.com/s/r1f3vr43uooi8pmb79ztmxqaje2efxxc
https://arxiv.org/abs/2109.01329
https://arxiv.org/abs/2104.08265
https://anl.box.com/s/xq96axpb4cckg65r9gjhjb3pjemwm7pj
https://arxiv.org/pdf/2203.09945.pdf
https://www.anl.gov/hep-cce


HPC and DUNE Computing
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● Utilizing HPC → Computing R&D 

○ I/O and Storage 

○ How do we transfer data to LCFs

○ Existing frameworks and data 
formats in HEP not HPC friendly 



Realtime AI/ML trigger and tagging @ FNAL     
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● Efforts focused on :

○ Developing a data-driven electronics noise model for ICEBERG 
■ crucial for producing realistic simulated samples 

○ Testing and developing ML based techniques:

■ to process raw 1D waveforms from individual wire channels to detect regions of 
interest and denoise waveforms

■ To process raw 2D wire plane data to identify signals such as those from Ar39 
decays and separate them from noise background



 Supernova Candidate Processing 
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● Limited space and infrastructure (i.e. cooling) at the far site means → no bulk processing 
on a local farm

● 10,000 – 40,000 present-day CPUs needed for reconstruction to finish within a few hours of 
event (goal: preliminary direction before event rises in optical bands)
 -  HPC centers 

■ Concern → data transfer in and out
 

● Must be able to handle large input stream as well as output at a similar rate
           - Run standard data reco or make a slimmed-down, faster version? Speed vs. 
accuracy tradeoff? 

● Implications for additional network paths? What are those requirements? Costs? 
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The ACHILLES Event Generator Phys. Rev. D 107, 033007 (2023)

● New theory-driven event generator
○ Fermilab-led
○ Neutrinos, electrons, BSM

● Technical design borrows techniques from 
collider physics event generators

○ Applies these to neutrinos for the first 
time

● Example: Automated leptonic tensor
○ Phys. Rev. D 105, 096006 (2022)
○ Support wide range of BSM 

models without dedicated 
development work

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.107.033007
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.096006


HEPCloud Contd.
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Computing Services
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Support and develop common computing tools for all experiments 

● Data management and submission 

● Software distribution and build systems 

● Source code version control systems and repositories 

● Access to Open Science Grid and High-Performance Computing centers 

● Interactive computing machines 

● Online and Offline software frameworks 

● Interactive Analysis Tools



High Performance Computing (HPC) - Gen Z DOE Supercomputers    
● Future HEP Experiments -

○ Order of magnitude increase in data rate 
■ Data & processing complexity within existing frameworks
■ “Buy more CPUs” - not an option 

● Explore parallelism 
■ Future HPCs – CPUs + GPUs 

● fast turn around processing and regular raw data 
processing

● Code portability from CPU to GPU crucial
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High Performance Computing - HEP CCE Efforts     
PPS: Portable Parallelization Strategy IOS: I/O and Storage

● Investigate software portability solutions
○ Kokkos, OpenMP 

 
● Evaluate ease of porting - Porting, building, 

performance, code impact

Neutrino 
Generator

Particle 
Simulation

True ionization 
electrons

Pulses on TPC 
wires

● Performance of ROOT I/O in HEP workflows on 
HPC systems

● Investigate HDF5 as intermediate event storage 
for HPC processing

● HPC friendly Data Model : Experiment agnostic

https://www.anl.gov/hep-cce

● Parallel I/O of the HEP data using MPI (Message 
Parsing Interface) and HDF5 libraries 

1 2 3 4 5 6 7 8

MPI rank 0 MPI rank 1

1 2 3 4 5 6 7 8

1st parallel 
write

2nd parallel 
write

HEP-CCE

https://www.anl.gov/hep-cce

