Non-Oscillation Searches at DUNE ND

Wooyoung Jang for the DUNE Collaboration Department of Physics University of Texas at Arlington

Path to Dark Sector Discoveries at Neutrino Experiments Colorado State University 5th June 2023

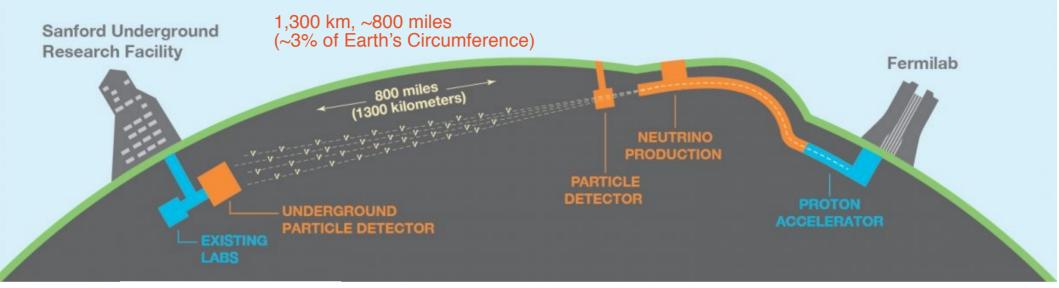
Outline

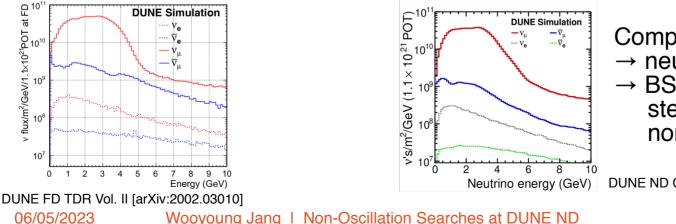
- Introduction
- Deep Underground Neutrino Experiment (DUNE)
- DUNE Near Detector Complex
- DUNE ND BSM Physics Topics
 - Light Dark Matter
 - Axion-like Particles
 - Neutrino Trident
 - Heavy Neutral Lepton
- Summary

Quick introduction of ND subdetectors, and will point out what makes it good for dark sector or Non-oscillation studies

Not going to address all the details but will focus on:

- 1) Signatures of Signals/Backgrounds
- 2) Tools and simulation workflow
- 3) Currently expected sensitivity


Introduction


- 1998, neutrino oscillation phenomenon discovered:
 - Neutrino oscillation revealed that $m_{\nu} \neq 0$.
 - This is apparently contrary to the assumption of the Standard Model (SM).
 - Therefore, this means that now neutrino physics entered the into the realm of Beyond Standard Model (BSM) physics.
- This demands the precision measurement of <u>neutrino oscillation parameters</u>.
- In experimental particle physics, the word 'precision' often related to high statistics.
 - Large mass, high precision detectors and high intensity neutrino beam with longbaseline.
 - This makes cutting-edge neutrino experiments as a general purpose particle physics machine.

Deep Underground Neutrino Experiment

Comparing two measurements

- \rightarrow neutrino oscillations
- \rightarrow BSM physics? sterile neutrino, non-standard interaction

DUNE ND CDR [arXiv:2002.03010]

Wooyoung Jang I Non-Oscillation Searches at DUNE ND

The LBNF Beam

- The new PIP-II accelerator will provide 120 GeV proton beam to DUNE through the Main Injector.
- The Phase-I operating beam power is 1.2 MW and it can be upgraded up to 2.4 MW.

Parameter	Protons per cycle	Cycle Time (sec)	Beam Power (MW)
≤ 1.2 MW Operation - Current	Maximum Value	for LBNF	
Proton Beam Energy (GeV):	8		
60	7.5E+13	0.7	1.03
80	7.5E+13	0.9	1.07
120	7.5E+13	1.2	1.20

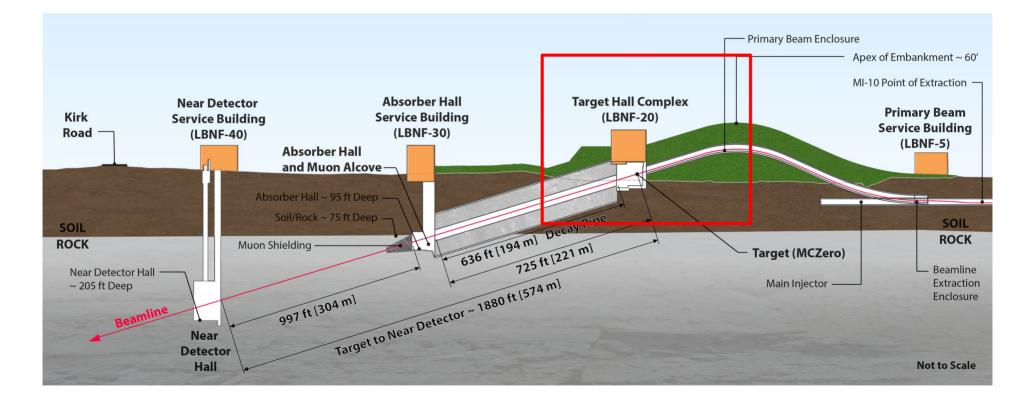
Day-1 configuration

Proton Beam Energy (GeV):			
60	1.5E+14	0.7	2.06
80	1.5E+14	0.9	2.14
120	1.5E+14	1.2	2.40

Fermilab Accelerator Complex

[Heidi Schellman, ICHEP 2018]

5


Phase-II

06/05/2023

Wooyoung Jang | Non-Oscillation Searches at DUNE ND

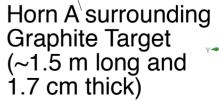
TEXAS ARLINGTON

Target / Hadron Absorber / ND

TEXAS ARLINGTON

Target Hall Complex

- Neutrino production.
- Collimate charged mesons using 3 steps of focusing horns system to focus neutrino beams and get wide bandwidth of neutrino energy.
- ~52% beam power will be used in here.
- Produce dark secto particles?


[G4LBNE] is the simulation tool for this study.

06/05/2023

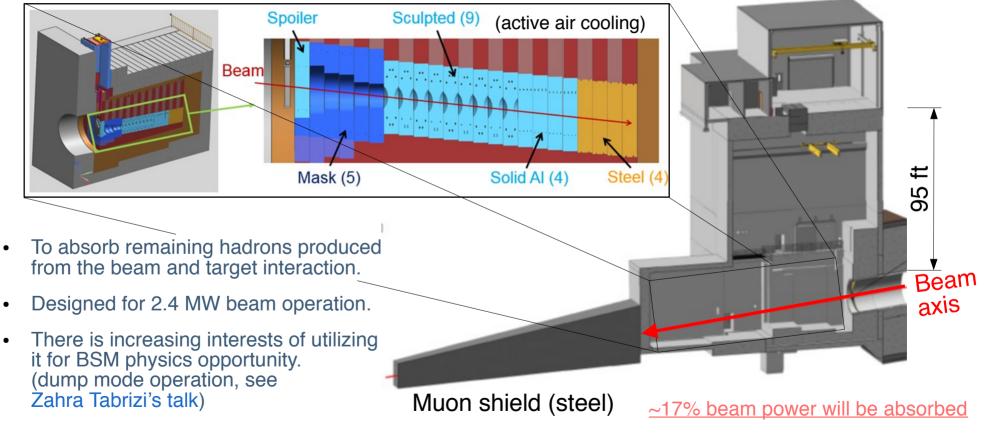
Decay Pipe

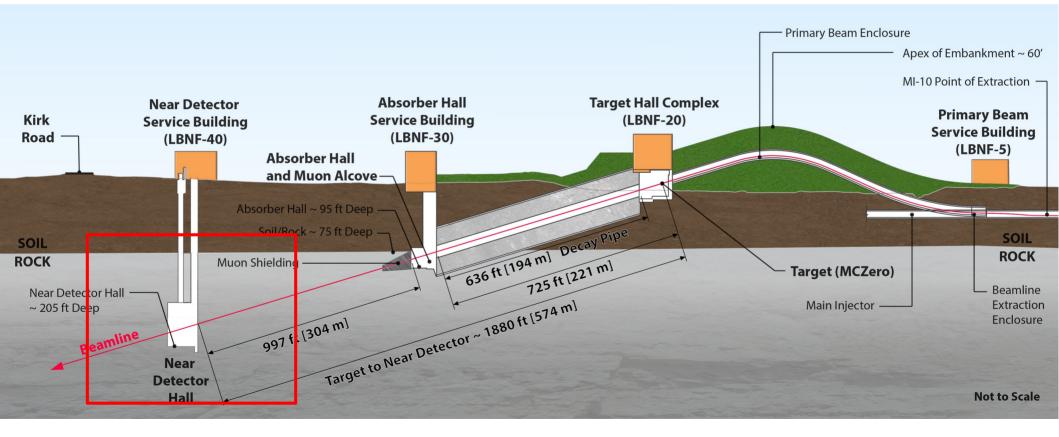
Wooyoung Jang | Non-Oscillation Searches at DUNE ND

Horn C

rimary bea

Horn B


Target / Hadron Absorber / ND

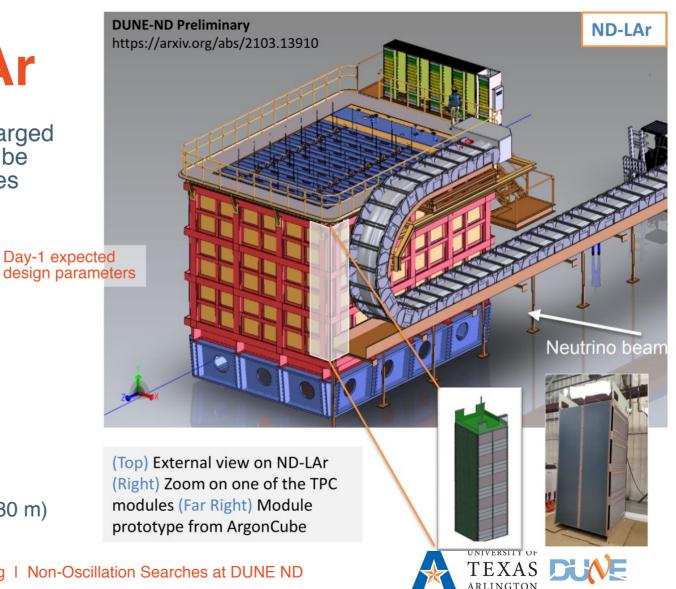

Hadron Absorber


Target / Hadron Absorber / ND

DUNE Near Detector Complex

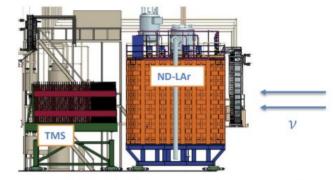
06/05/2023 Wooyoung Jang | Non-Oscillation Searches at DUNE ND

11


DUNE ND-LAr

- LArTPC provides excellent charged particle measurement and will be used to measure neutrino fluxes precisely.
 - Spatial resolution ~ 1 mm³
 - Angular resolution ~ 5 mrad
 - Energy resolution $\sim 5\%$
- ~150 t active material mass
 - Modular design
- $4 \text{ m} \times 3 \text{ m} \times 5 \text{ m}$ Active Vol. $(3 \text{ m} \times 2 \text{ m} \times 3 \text{ m} \text{ Fiducial V.})$
- Detector movable Off-Axis (max ~30 m)

[Federico Battisti, ICHEP 2022]



Wooyoung Jang | Non-Oscillation Searches at DUNE ND

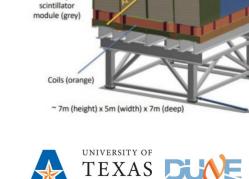
DUNE ND-GAr / ND-TMS

- Allows ND provides excellent momentum resolution for charged particle tracks (μ , p) that were produced in ND-LAr and through interplay with ND-LAr it will provide precise neutrino flux measurement at ND site.
- ND-TMS will likely to be the DUNE day-1 configuration and will be upgraded to ND-GAr in DUNE Phase-II.

Forty 15-mm

thick steel layers

TMS

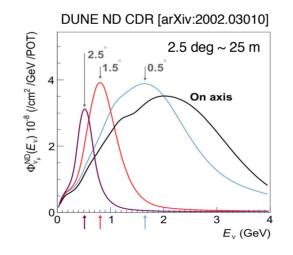

48-strip

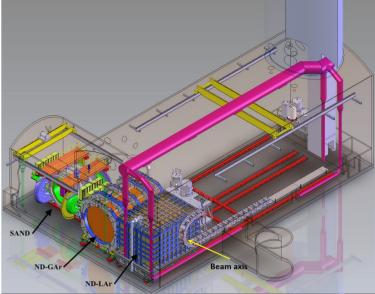
 In the viewpoint of dark sector study, we expect opportunities to catch the decays of longlived unstable dark sector particles.

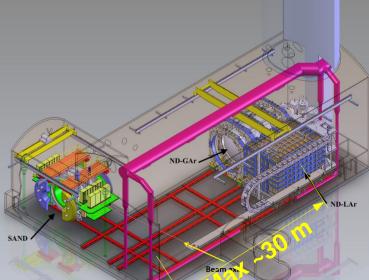
Detector movable Off-Axis as well as ND-LAr

[Federico Battisti, ICHEP 2022]

ARLINGTON


Sixty 40-mm


thick steel lavers


Wooyoung Jang | Non-Oscillation Searches at DUNE ND

DUNE ND PRISM

- The main purpose of the PRISM system is to control systematic uncertainties of neutrino fluxes originated from materials along the neutrino pathways.
- By locating ND subdetectors to the Off-Axis position, this decreases neutrino flux and it plays a role in <u>reducing backgrounds</u> in **BSM** studies.
- Movable up to ~30 m.

Wooyoung Jang | Non-Oscillation Searches at DUNE ND

What Makes DUNE ND Well-Suited for BSM Study?

- Direct Observation Signature from the Beams
 - Require high beam flux $\rightarrow P_{beam} = 1.2 2.4 \text{ MW}$
 - Large mass, high density for scattering signatures \rightarrow ND LAr w/M_A = 150 t, fine segmentation
 - Large volume, low density for decay signatures → ND-GAr ND w/ECAL and magnetized precision tracking
 - Capable near detector complex → Combinations of ND-LAr + ND-GAr on PRISM + SAND for fine tracking & beam monitoring
 - Low threshold energy → Both ND and FD TPC threshold ALA few MeV
- What do we need to know?
 - Signal flux and realistic behaviors in the detector
 - Neutrino flux and their interactions in the detector as bck \rightarrow ND Sub-detectors with PRISM

[Jae Yu, Snowmass CSS 2022]

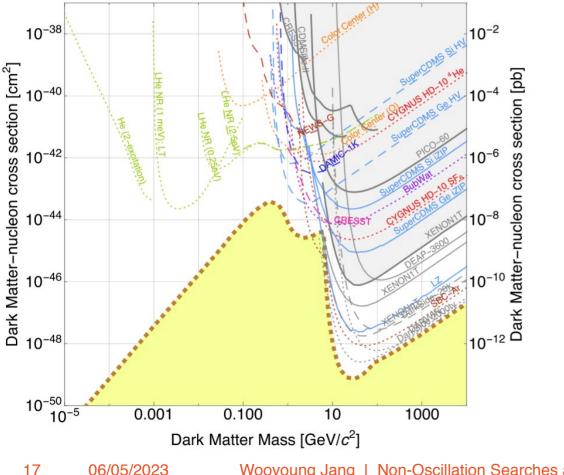
Selected BSM Topics at DUNE ND

- High beam power, large detector mass + highly capable, precision near and far detectors with low E threshold make DUNE a BSM machine
 - Recall the signal to background ratio grows by the sqrt of the beam power
 - Near Detector Searches è Take advantage of high beam power-
 - **Axion-like Particles (ALP)** ٠
 - Low mass Dark Matter (LDM) ٠
 - Heavy Neutral Leptons (HNL) ٠
 - **Neutrino Trident** ٠
 - Dark Photon ٠

٠

Milli-charge Particles (mCP) ٠

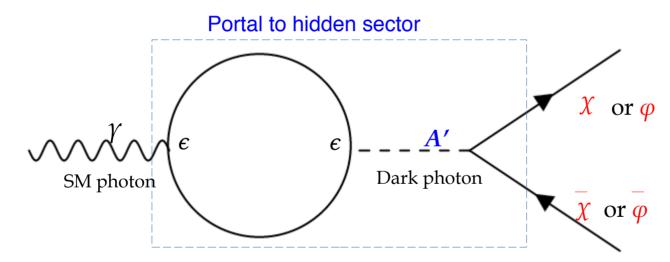
Please check arXiv:2103.13910 and EPJ C.81, 322 (2021) for more physics. And many many more ..


- Far Detector Searches take advantage of ND, large VA FD & long baseline
 - Sterile neutrino searches .
 - Non-standard Interactions, Non-Unitarity, CPT violation ٠
 - Large Extra Dimensions (LED) ٠
 - Boosted Dark Matter (BDM) & Inelastic Boosted Dark Matter (iBDM)
 - And many many more... ٠
- Strong collaboration of theorists and experimentalists essential
- Some of these topics covered in EPJ C.81, 322 (2021)
 - 16 Wooyoung Jang 1 Non-Oscillation Searches at DUNE ND 06/05/2023

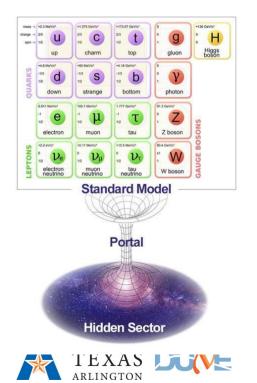
[Jae Yu, Snowmass CSS 2022]

Topics I will cover today.

Light Dark Matter



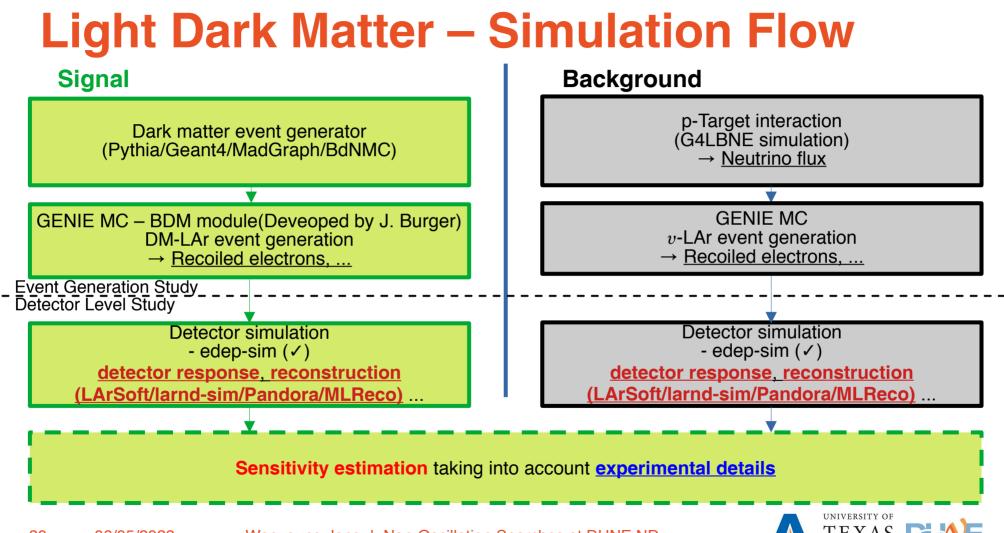
- Phase space for WIMP searches.
- ~1 GeV, a threshold to capture DM-nucleon scattering event in LXe/LAr/Ge/GHe detectors.
- Sub-GeV territory is remain unexplored.
- Many new ideas other than WIMP
 - WIMP mass lower than 2 GeV can not explain dark matter relic abundance.
 - Hidden sector or portal interaction scenario.


Light Dark Matter – Introduction

- In our light dark matter model, we assume that standard model photon is kinetically mixed with 'dark photon'.
- Dark matter particles can be produced by decay of dark photon through the 'portal interaction'.

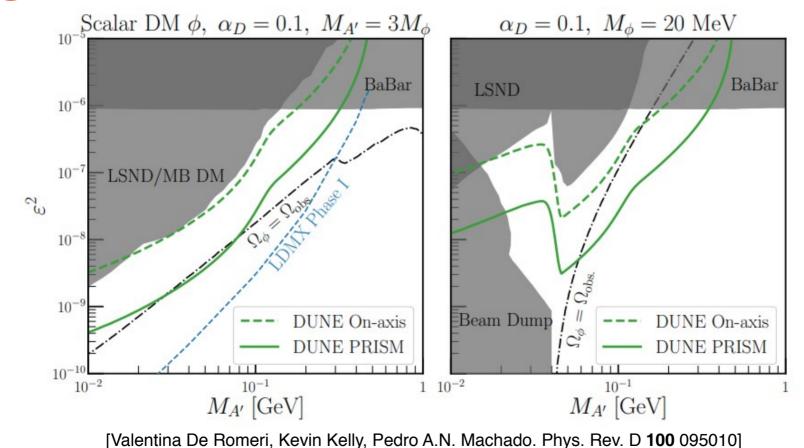
Beam intensity ~ Photon flux ~ **Dark matter flux**

DUNE, equipped with **high-intensity proton beam** provides a great opportunity to test this type of dark matter scenario.



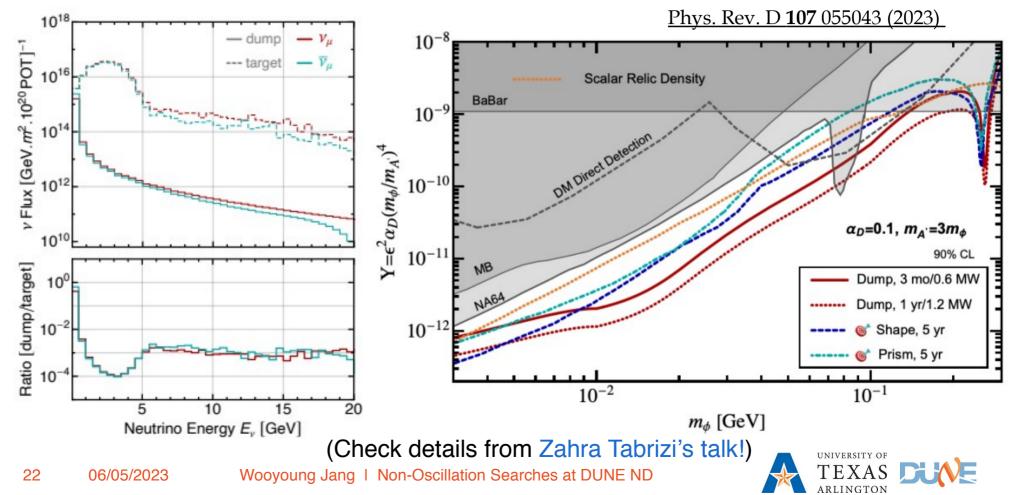
Light Dark Matter – Event Generator

- PYTHIA: Neutral meson flux → Dark matter flux [Valentina De Romeri et. al. Phys. Rev. D 100 095010]
 - Contribution from secondary interactions?
- Signal Event Generator DMG4 [M. Bondi et. al. CPC 269 (2021) 108129]
 - Good
 - Versatility and detailed simulation powered by Geant4
 - Limitation
 - Programmed for electron beam dump experiment (NA64)
 - Supports DM production only through <u>bremsstrahlung</u> and e⁻+ e⁺ <u>annihilation</u>.
 π⁰ decay is not supported.
 [Matthew J. Dolan et al Phys. Rev. Lett. **121** 101801 (2018)]
- MadGraph
- BdNMC

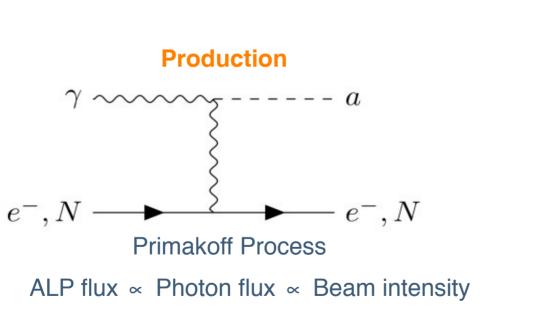

We didn't had chance to simulate nucleon recoil yet...

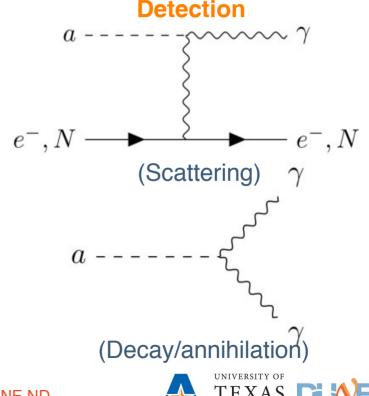
19 06/05/2023 Wooyoung Jang | Non-Oscillation Searches at DUNE ND

ARLINGTON

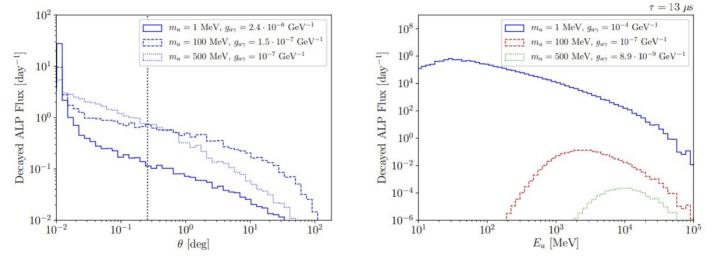

Light Dark Matter – Sensitivity

21


TEXAS ARLINGTON


Light Dark Matter – Sensitivity (cont'd)

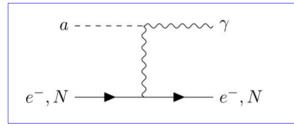
Axion-like Particles


• ALPs are general extension of QCD axion to solve strong CP problem and at the same time an excellent dark matter candidate.

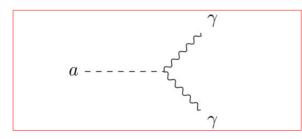
Axion-like Particles – Tools

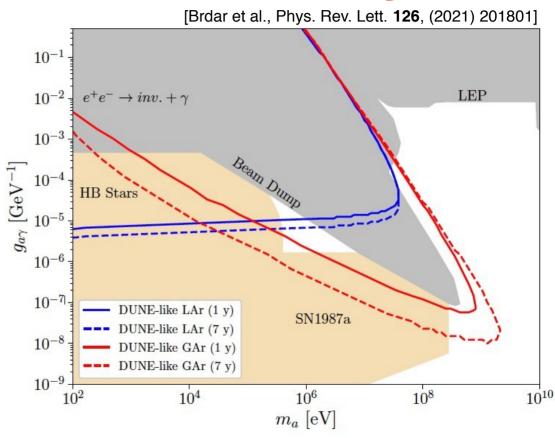
• Standalone Geant4 simulation to obtain photon flux → Convert it to ALP

[Brdar et. al. Phys. Rev. Lett. 126, 201801 (2021)]


DMG4 supports ALP production

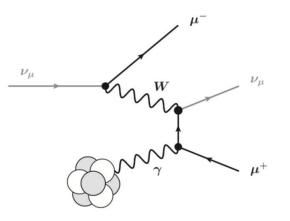
24

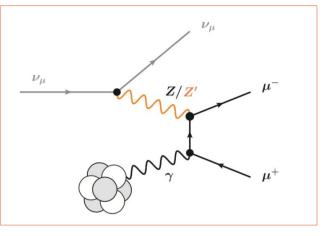


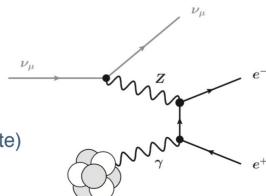

Axion-like Particles – Sensitivity

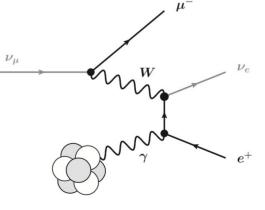
- Detection through scattering
 - ND-LAr

- Detection through decay
 - ND-GAr (Phase-II)





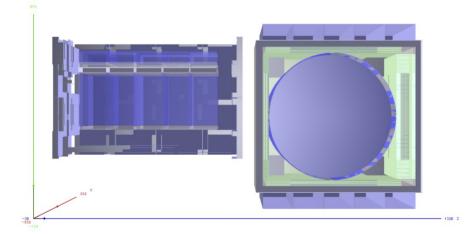

Neutrino Trident

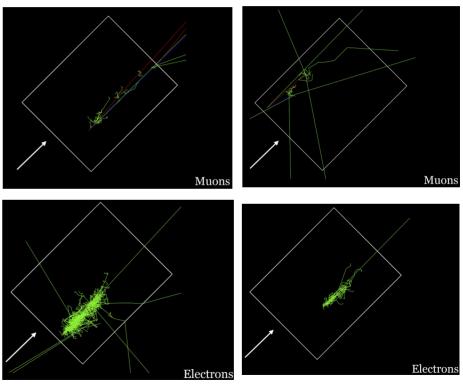

- Neutrino tridents rare SM weak processes
- Signature: a pair of charged leptons
- Δ suggests unknown gauge boson (Z') couplings.

 Δ =(SM expected rate – Observed event rate)

Neutrino Trident – Backgrounds Backgrounds

- Muon tridents main background: $v_{\mu} CC 1\pi 0p$
 - Difficult to distinguish pions and muons using calorimetry information, range etc.
 - Need to be identified from other event properties.
- Electron tridents main background: NC π⁰
 - Photon showers from resulting pi-zero decay could mimic the expected two electron showers.
- Have started studying the muon trident backgrounds using initial ν_μ CC 1π0p events (some plots follow). Order of magnitude more stats on its way!


[M. Wallbank, DUNE BSM WG Meeting]

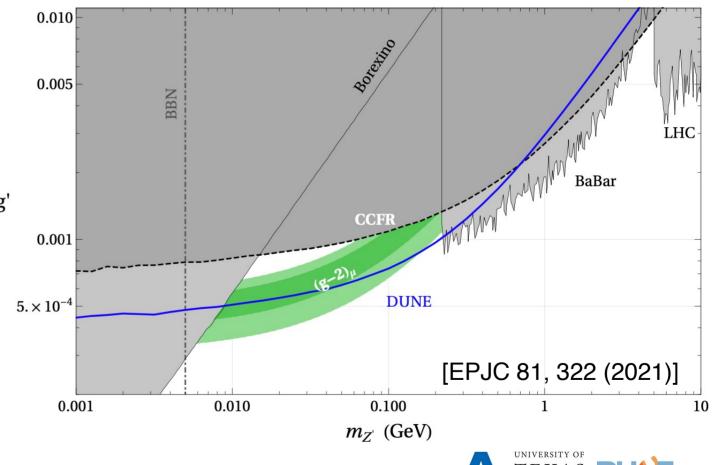

M Wallbank (Cincinnati)

Neutrino Trident – Tools

- Standalone Event Generator Interfaced to Geant4
- Background simulation: GENIE

ND-LAr geometry (GDML based implement)

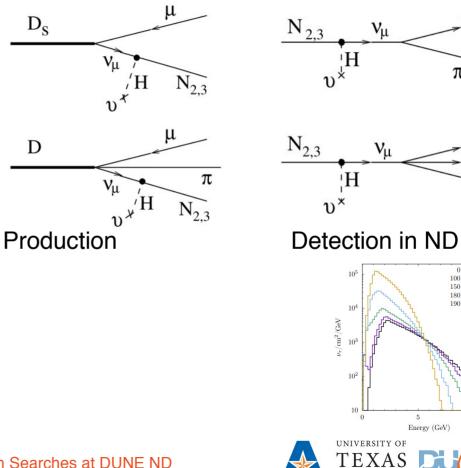
[Figures from J. Martín-Albo, DUNE CM Jan. 31. 2018] Wooyoung Jang I Non-Oscillation Searches at DUNE ND



Neutrino Trident – Sensitivity

DUNE is sensitive in the region where $(g-2)_{\mu}$ anomaly can be explained at 1σ and 2σ

Shaded in gray: CMS($pp \rightarrow \mu^+\mu^- Z \rightarrow \mu^+\mu^-\mu^+\mu^-$) BaBar($e^+e^- \rightarrow \mu^+\mu^- Z \rightarrow \mu^+\mu^-\mu^+\mu^-$) Borexino(solar *v*-e⁻ scattering) CCFR(Tevatron trident meas.) g'


Theoretical constraints: BBN

ARLINGTON

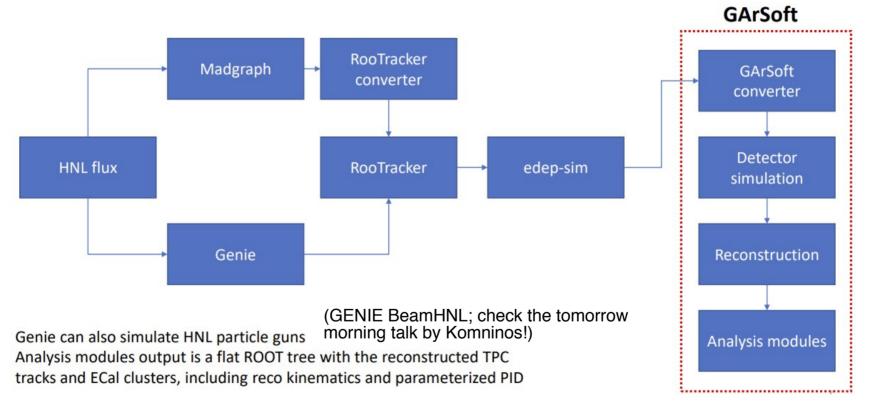
Heavy Neutral Leptons

- Energetic collision of proton beam to the target often create heavy mesons such as D.
- Such heavy mesons could be a source of Heavy Neutral Leptons.
- HNLs are assumed to be stable enough to be able to stay alive until it fly ~500 m from the target to ND and then they decay-inflight in the ND.
- HNL Signature:
 - Charged leptons + lighter mesons

D

π

μ

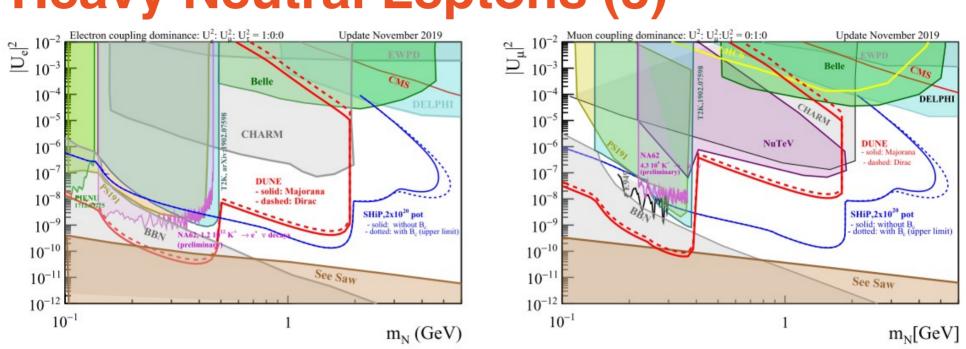

 v_e

0 MeV -

100 MeV -150 MeV -180 MeV 190 MeV

ARLINGTON

Heavy Neutral Leptons (2)


[Haifa Sfar, DUNE BSM WG Meeting]

Heavy Neutral Leptons (3)

32

06/05/2023

90% CL sensitivity regions for dominant mixings $|U_{eN}|^2$ and $|U_{\mu N}|^2$ are presented for DUNE ND (red). solid: Majorana neutrino / dashed: Dirac neutrino

Event Signatures and List of Tools

	Signal	Background	Evt. Gen.	Det. Sim.
LDM	$\chi e^- \rightarrow \chi e^-$	$v_e e^- \rightarrow v_e e^-$	Pythia/Geant4/	Edep-Sim
	$\chi N \to \chi N$	$vN \rightarrow vN$	MadGraph/BdNMC/ DMG4	Larnd-sim
ALP	(S) γ e , γ N	v coherent, NC w/ π^0 , v_e CC w/ π^0 , etc	Pythia/Geant4/DMG4	Edep-Sim Larnd-sim
	(D) үү			
Trident	$\nu \rightarrow \nu e^- e^+$	$v_{\mu}N \rightarrow v_{\mu}\pi N' (v CC)$ NC π^{0}	Geant4 (Standalone) GENIE	Edep-Sim Larnd-sim
	$\nu \rightarrow \nu \mu^{-} \mu^{+}$			
	$\nu \rightarrow \nu e \mu$			
HNL	$N \rightarrow \nu e^- e^+$	<i>v</i> CC + mis-ID p, <i>v</i> e CC w/ π ⁰	Standalone HNL flux GENIE MadGraph5	Edep-Sim GArSoft
	$N \rightarrow \nu \mu^{-} \mu^{+}$			
	$N \rightarrow \nu \gamma$			
	$N \rightarrow \nu e \mu$			
	$N \rightarrow \nu \pi^0$			
	$N ightarrow e \pi$			
	$N ightarrow u\pi$			

Conclusion

- DUNE is a powerful BSM machine as well as it is excellent for neutrino physics.
- High-intensity proton beam and precision detectors of DUNE provides great opportunity to explore the dark sector or BSM physics.
- We have discussed the capabilities of DUNE ND subdetectors and a variety of Non-oscillatory physics topics that can be unveiled by utilizing them.
- Collaboration between theorist and experimentalist is essential to accomplish this.

