"Non-Beam" Triggering at DUNE

Josh Klein, for the DUNE Collaboration June 5, 2023

Outline

- DUNE Phase I
- Triggering Constraints and Design Considerations
- Performance and Future

DUNE Phase I Far Detector Modules

FD1: "Horizontal Drift"

- 4 drift volumes
- 1 collection+2 induction wire planes on each anode (x/u/v) plane="APAs"
- Photon Detection
 System (PDS) only on anodes

FD2: "Vertical Drift"

- 2 drift volumes
- 1 collection+2 induction "strip" planes on each anode plane="CRPs" (y/u/v)
- "4π" Photon Detection System (PDS)

"Non-Beam" Triggering

- DUNE Far Detectors (FDs) do not have a "beam" trigger
- Trigger is intended to be as inclusive as possible
 - We expect ~100% efficiency above about 100 MeV
 - Do not use beam information in trigger criteria for these energies
 - (We could if it was useful for some physics topics)
 - Beam and atmospheric v interactions are each ~1000/10 kt/year
- For low energies (< 20 MeV) criteria become more complex
- Supernova burst triggers are handled very differently
- Near detectors will have a beam-related trigger
- (As do the ProtoDUNEs at CERN)

"Non-Beam" Triggering

Additional notes:

- LArTPCs are slow enough that trigger is entirely in software
- Front-end buffering can hold up to 10 seconds of *everything*
 - Every ADC sample of every waveform from every TPC channel
- Photon Detection System (PDS) records waveform snapshots
 - Much lower data rate even though system is much faster than TPC

The bottom line:

5

• Inclusive ~100% eff. high-energy triggers above 100 MeV

A Penn

• Some exclusivity below 20 MeV is possible if valuable

Background and Storage Limits for Triggering

FD Trigger Design Considerations

1. Inclusive

- Above 20 MeV we aim to trigger on everything with close to 100% efficiency (there is no "cosmic-ray trigger")
- Possible that SOME exclusivity can help with radiologicals
- A trigger is not an analysis!--We don't want different algorithms for e.g., CC/NC

2. Simple

- Measuring efficiencies and their uncertainties is complicated
- Need a reasonable latency so that we don't run off front-end buffers
- We never ever want code to ever hang (fewest possible dependencies!)

3. Hierarchical

- Trigger is hierarchical: highest level sees most information
- This applies to space/time/systems/views/external input
- Allows for more sophistication downstream where rate is lower

4. Physics

• A trigger that rejects ³⁹Ar by only 1000 doesn't add any physics

Channel Hit-finding: Trigger Primitives (TPs)

Hierarchical Trigger

Simplified View

TPC Trigger Primitives (TPs)

Induction Channel Trigger Primitives

Trigger Activities (TAs)

- Goal is to find *local* (in channel/detector space) activity
 - E.g., a single APA or CRP, or set of X-ARAPUCAs
- Multiple concurrent algorithms possible
 - Low-energy TPC (e.g., SN neutrino interactions)
 - High-energy TPC (atmospheric neutrino, proton decay...)
 - Low-energy PDS
 - High-energy PDS
 - (etc.)
- Algorithms need to be able to handle ~250 kHz of TP inputs
- Needs to be robust against noisy, dead, or missing channels

High Energy Trigger Activity Example: Clustering and Cutting

Cannot simply sum up all charge---in 10 ktonnes and a full drift, this is about a GeV of charge. Clustering then cut on number of adjacent channels, total charge, max charge, max time-overthreshold, etc.

Thresholds is set conservatively assuming 5.4 ms readout of *all* channels had data rate < 25% of cosmic data rate (High-E events only)

Radiological rate acceptable with:

- N_{adj} >= 8 wires
- Cluster charge sum > 7000 ADC counts
- Max integrated wire charge > 6500 counts
- Max time-over-threshold >= 45 ticks

For high-rate Low E events, we would not save all channels—lower threshold possible

Trigger Candidates (TCs) Larger Scope

- Entire module of single system (e.g., all wires)
- Can look for spatial correlations between TAs
 - Horizontal muons crossing multiple APAs (ProtoDUNE)

- Can look for time correlations between TAs
 - Supernova bursts
 - Spallation neutrons from cosmic-ray that misses active volume
 - Low energy NC interactions that lead to gammas+neutrons
- High-energy TAs are simply "promoted" to TCs

DUNE FD Module Level Trigger Logic

- MLT "sees" all systems, channels, and large blocks of time
- Makes Trigger Decisions based on Trigger Candidates → Leads to a Trigger Record to disk
- TCs from different systems come at different times;

we merge them if readout windows overlap

Penn

Data Filter

Data Filter:

- Operates on full triggered data:
 - All TPC+PDS information in a particular time window
- Can remove entire events
- Can remove parts of an event (e.g., ROI selection of "hit" channels)
- Can tag event classes for online or nearline analysis pipelines
- Data Filter has ~1 minute to process an event
 - Potential for aggressive fiducialization, flash-matching, energy estimation...
- Can handle different triggered event classes differently

External Trigger Interface

- Allows inter-module triggering
 - SN burst trigger in one module will trigger another
 - Can require coincidences between modules
 - Can add event criteria (e.g., N_{FD1}+N_{FD2}>N_{thresh})
- Can take input from other local detectors
 - LZ? Theia? nEXO?
- Can take input from non-local detectors
 - Delay must be << 10 seconds

Data Selection Output

- Stream of trigger primitives (x/u/v and PDS)
 - TPC threshold ~250 keV
 - PDS thresholds 1-2 pe
 - Record time, charge integral, peak, time-over-threshold
 - Triggerless (other than channel thresholds)
- SN Burst data: 100 seconds of *everything*
 - Target fake rate of 1/month
- Nominal "Trigger Records"---typically single interactions/decays
 - Limited by total storage requirements
 - Size of each Trigger Record depends on ROI selection (if any)
 - Strictest ROI likely on lowest energy data

Note: Supernova Burst Neutrinos are collected by all 3 paths; second path collects *everything* but time to analysis is longer than others.

The trigger is intentionally *inclusive* but different species have different topologies and thus different efficiencies

Low Energy Trigger Efficiency

Using just clustering and total charge but no time-over-threshold:

At 3 hits/trigger activity cluster rate from backgrounds ~10 Hz

Low Energy Trigger Efficiency

Event topologies can help reject backgrounds at trigger level:

iq/c 300

250

200

150

100

50

Low Energy Trigger Efficiency

- Timing and topological information even in photon hits
- Combination of photon triggers with TPC triggers can allow fiducialization to remove neutrons and cavity gamma-rays

J. Crespo-Anadon, P. Barham

"Natural" place for this is in Module Level Trigger logic and Data Filter

Low Energy Trigger Rates

Region-of-Interest (ROI) Readout

- High-Energy: Record ~5ms of every channel's waveform
- Low-energy would quickly fill up entire disk allocation
- Move to region-of-interest data selection for these events

Can have a higher trigger rate if data/trigger is smaller:

- 1. Halve readout window
- 2. Write out only APAs with trigger activity (TA)
- 3. Use a much narrower readout (100 µs) window around hits ("zero suppression")
- 4. Fully localize TA and use 100 μs window for readout

	Table 2:		
Data Reduction Approach	Event Size (Uncompressed)	Max Trigger Rate	Enabled Physics
Nominal	6.075 GB	0.078 Hz	Beam, NDK, Atm.
2.7 ms Readout Snapshot	3.3075 GB	0.156 Hz	Unknown
APA-Localization (Cosmics)	0.243 GB	1.95 Hz	hep solar ν
APA-Localization (Low-E)	0.041 GB	11.7 Hz	⁸ B solar ν ,
			neutrons,Rn
Zero Suppression	0.040 GB	12.0 Hz	⁸ B solar ν ,
			neutrons,Rn
TA Localization	14.6 kB	32.5 kHz	42 Ar, 40 Cl,
+Zero Suppression			pep solar ν ?

1 MeV 10 MeV 100 MeV 1 GeV

Energy (MeV)

Phase II?

FDs not defined yet, but...

- If FD3 and/or FD4 look like FD2, only change is more inter-module triggering
- If FD3 and/or FD4 have higher photo coverage, might allow lower trigger threshold
- If FD3 and/or FD4 are pixelized, might run them triggerless
 - Pixel data is a lot like trigger primitives (not full waveforms)
 - Same is probably true for "ARIADNE" optical readout
 - But would like to do inter-module triggering so still might want a trigger
- If FD3 and/or FD4 is water-based liquid scintillator or similar...
 - Could run triggerless but want to leverage << 1 ns timing to trigger other FDs
 - This trigger might go through "Hardware Signals Interface" (HSI)

Ultimately, though, likely little change to overall architecture

Summary

- DUNE FD trigger is very flexible
- Hierarchical design increases information at each level
- At high-energies, expect near 100% efficiency
- Low-energy triggering constrained by backgrounds
- But many opportunities for pushing lower

Backups

TOF Comparison

Cosmic pileup in 100 μ s window=4x10⁻⁶/spill

Trigger Flow Diagram

A lot of the complexity is in dealing with a realtime system---Making sure things are in time order, dealing with problematic channels, etc.

We do not expect algorithms to take much time.

A quick note about the word "threshold"....

- Trigger Primitives have a "hit" threshold
- Trigger Decision based on various "event" thresholds
- Supernova Bursts have a "burst threshold"
 - Once a burst is triggered, the data is acquired with zero threshold for 100 s

Trigger Primitives (TPs) Hit finding

Example from ProtoDUNE-SP

P. Rodrigues

6/5/2023

35

TP threshold was around 1/4 MIPequivalent, or around 250 keV_{MF} (per wire)

Raw noise in ENC at PD I was ~600 e (collection) Approx MIP Efficiency (%) Primitive rate (kHz/APA) 10² 10 16 ADC 12 ADC ADC MC (about ½ 40 MC gain of where 20 10we ran PD-SP I) 10 5000 10000 15000 25 5 10 15 20 Number of electrons Effective threshold (ADC)

Raw noise RMS in PD I was 3-4 ADC above pedestal

Josh Klein I DUNE Triggering

Supernova Bursts

Additional handle: Time and energy profile

T. Bezerra

Note: we read out *everything* for 100 s if we detect a burst---event efficiency does not matter (much) except outside of that window Can accommodate more aggressive "trigger activity" threshold but lowering single-interaction threshold hurts without energy-weighting

Supernova Bursts

Additional handle: Time and energy profile

T. Bezerra

AND: Normal triggering continues in parallel with SN burst trigger---all events above threshold are built, and threshold can be *dynamic*. Can accommodate more aggressive "trigger activity" threshold but lowering single-interaction threshold hurts without energy-weighting

Not including energy profile

Performance at PD-SP 1

Horizontal Muon Trigger (exclusive)

Buffer depth was 1 second

