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Outline

o What will we discover in the next decade(s)?
o How will we be prepared to capitalize on those discoveries”?

© \What comes next?



The discoveries ahead



What’s to come...
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Near Detectors as LLP Factories

Proton Beam
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Magnetic Focusing Horns Decay Volume
1) Charged and Neutral 2) Mesons undergo rare decays into dark 3) Dark Sector particles
Mesons are produced In sector mediators that are long-lived. decay inside the neutrino
the high-energy/high- Some fraction of them travel in the detector, leaving a striking

intensity proton collisions. forward direction. signature.



HNLs — Current Constralnts

Constraints from Oscillation
Experiments (Light Steriles)
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Let’s Zoom In a thtle...
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HNLs in the DUNE Beam

1 016 Neutrino Mode
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Gaseous Detectors for Decays

* New-physics particles can decay inside the
detector, producing a signal that is difficult for
neutrino scattering to mimic.

* This includes decays to charged lepton pairs, a
lepton and a pion, etc.

* Low backgrounds in gaseous detectors (like at
DUNE) are an ideal site for these searches.
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Next-Generation Sensitivity at DUNE

Berryman, KJK, et al, [1912.07/622], JHEPO2 (2020) 174
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More on HNLs at DUNE? Ballett et al [1905.00284], Coloma et al [2007.03701], Breitbach et al [2102.03383]
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All single-mixing sensitivity
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Preparing for post-discovery



LNV in a (Heavy) Neutrino Beam

Do the new particle’s
Interactions preserve or
violate Lepton Number

conservation?

Is the new particle a
Dirac or Majorana
Fermion?

" / " Do these two

I
Kmmnne- Z,/\N chains occur with

_I_
l/L ] |
Heavy Neutrino Soume\ N e equal probability?

Heavy Neutrino Decay
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Neutrino vs. Antineutrino Mode
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Expected Beam Purity
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Next-Generation Prospects

Exp. DUNE Sensitivity,
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What if we’re not lucky?

- What if the HNL is lighter than the pion? Then there are no fully-visible final states to decay into, and
Lepton Number can’t be identified on an event-by-event basis.

(could also be a charged-lepton pair instead of a photon, etc.)
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Balantekin, de Gouvéa, Kayser [1808.10518]

Two-Body Decays

* Using CPT arguments, one can determine that,
If N Is a Majorana fermion, its decay Is
iIsotropic with respect to polarization direction.
If it is a Dirac fermion, not necessarily.

Z
N Rest Frame 4 (polarziation direction)
V
|
{
|
|
i

dl I
— (1 + acos6)

d cos 6 B 2

Boson Y 0 pY ZY |H°

23 (pud*) 1 mZ—ZmP mi—2m2Z 1
| |2+ |d|? m3+2m2 | m3+2m7,



https://arxiv.org/abs/1808.10518

Feasibility in a Neutrino-Beam Environment?

Because most HNLs in a beam environment will be boosted, so will their decay products. Rest-
frame anisotropy means differences in lab-frame energies. How distinct are these predictions?
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Berryman, KJK, et al, [1912.07622], JHEPO2 (2020) 174
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Going beyond



“Explicit” LNV vs. “Implicit”

I D
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Let’s envision a next-next-generation experiment

~few GeV
protons

Magnetic Field

Isotropic N Flux tens of meters
_—

* Depending on the discovered HNL's mass, we can design a beam to optimize its production
(focus on pion production, kaon production, etc.).

* With a detector off-axis, and a thick target, we can expect low-energy HNLs compared to a

beam environment. If it’s two-body-decays producing HNLs, they’ll all have the same energy.

* Furthermore, an off-axis detector can greatly reduce backgrounds from SM neutrinos.
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Extending Detection Channels in Such a Facility

Similar CPT as for the two-body case allowed us to extend our analysis to three-body decays. We were able to reach the
following conclusions — if N is a Majorana fermion, its decays are forward/backward symmetric if either

51 5
N rest frame| ‘ EB/W

* The final-state charged leptons are identical (e.qg.
electron/positron pair).

* Whatever detection mechanism being used is
charge-blind (can’t distinguish electron from
positron or muon from antimuon)
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How large can Forward/Backward Asymmetry Be?

If a non-zero asymmetry can be measured, one can prove that N is a Dirac fermion!

0.07

vV, mixing only

- ==V, mixing only

0.25

Allowed range, general V /A interactions

Decays mediated 2
solely via off-shell = A
W- and/or Z- \;g"
bosons

de Gouvéa, Fox, Kayser, KJK [2104.05719]
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Is this measurement feasible?

~few GeV
protons
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de Gouveéa, Fox, Kayser, KJK [2104.05719]

In this alternate environment, we can reconstruct
the N rest-frame much more easily. If N is truly a
Dirac fermion, how well can we reject the
Majorana-fermion hypothesis?
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Distinguishing Mixing Patterns

de Gouvéa, Fox, Kayser, Kelly [2109.10358]

9 . ,

| Dirac N Majorana N ——
my = 10 MeV, 100 Events my = 10 MeV,

Y 106, Events 30

Even with a massive mediator, O(100)
events is enough to distinguish
between neutral-current decays and
mixed neutral/charged-current ones.

40 1 2 3 4
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Measuring the Interaction Structure

Scalar /Pseudoscalar

de Gouvéa, Fox, Kayser, Kelly [2109.10358]
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Even if the N is unpolarized, we can still use its decay distributions to infer the type(s) of mediators contributing to its decay.
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Distinguishing Mediator Classes

L2 Majorana Fermion
100 Events Expected
lo (dashed), 3o (solid)
1 S, V. T) .= (1,0.0)
Majorana Fermion decaying via scalar .
contributions only — how well can we
exclude vector/axial-vector/tensor )
contributions to its decay width?
0
1.5
With 100 events observed, these
contributions can be constrained to be 1
fairly small! .
0.5
0 A ;;
0 0.5 1 1.5 0 0.5 1 1.5
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Takeaways

* (Hopefully) with the next generation of new experiments,
discoveries await, including physics separate from neutrino
oscillations.

* With careful thought, we can be prepared to leverage all data in
the wake of new discoveries.

e Some discoveries may require additional facilities to diagnose

their origin - should we start planning now?
Thank you!
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