Dark matter freeze-in from semi-production

Maxim Laletin (Warsaw U.)

Based on **JHEP 06 (2021) 026 [2104.05684]**

in collaboration with **A. Hryczuk** (NCBJ, Warsaw)

Dark Matters 2022

02/12/2022

Freeze-in

DM interacts feebly with SM and never reaches the thermal equilibrium

Amount of energetic SM states is exponentially supressed → freeze in

The stronger the coupling \rightarrow the larger the relic density

If governed by pair-annihilation

$$
\langle \sigma v \rangle \lesssim 10^{-40} \rm cm^3/s
$$

Testing freeze-in

1905.00315

Coupling too small to be probed by nearfuture indirect detection searches*

```
\langle \sigma v \rangle \lesssim 10^{-40} \text{cm}^3/\text{s}
```
* and direct detection too

Semi-production

Semi-production can appear from symmetry larger than Z_2

Production rate is proportional to the DM density:

Smaller initial abundance \rightarrow larger cross section to reproduce $Ωh²$

If m_{φ} < m_{DM} and the DM kinetic equilibrium isn't maintained (well), semi-production cools DM down \rightarrow

affects the rate \rightarrow affects the relic density

Toy model

Scalar real singlet φ + Z3 scalar complex DM

$$
\mathcal{L}_{int} = \mathcal{L}_{SM} + \mathcal{L}_{\phi-SM} + \frac{\lambda}{2} \phi \left(\chi^3 + (\chi^*)^3 \right)
$$

- \cdot φ is in full thermal equilibrium with SM
- x has a tiny initial abundance (e.g. from gravitational production)
- No elastic scatterings for $\chi \rightarrow T_\chi \neq T_{\rm SM}$
- \bullet Assume that T_{\times} evolution is known and vary it as a parameter

Calculation of the relic abundance

Solve the Boltzmann equation for the number density (nBE)

(neglecting the backreaction and quantum corrections)

$$
\frac{dY}{dx} = \frac{\Gamma_{\chi}(T_{\text{SM}}, T_{\chi})}{xsH} Y \qquad \qquad \Gamma_{\chi} = n_{\phi} \langle \sigma v \rangle
$$
\nanalytically

\n
$$
Y(x) = Y_{\text{in}} \exp\left(-\int dx \frac{\Gamma_{\chi}(T_{\text{SM}}, T_{\chi})}{xsH}\right)
$$

$$
\langle \sigma v \rangle = \frac{1}{n_{\chi}^{\text{eq}}(T_{\chi})} \int \frac{d^3 p}{(2\pi)^3} \int \frac{d^3 k}{(2\pi)^3} \sigma_{\phi \chi \to \chi \chi} v \, f_{\phi}^{\text{eq}}(T_{\text{SM}}) f_{\chi}^{\text{eq}}(T_{\chi})
$$

Results for the toy model

Realistic model

We expand
$$
\mathcal{L}_{\phi-\text{SM}}
$$
 and add $\phi^2(\chi^*\chi)$ term

Higgs portal interactions

$$
\mathcal{L}_{\phi-SM} = A\phi H^{\dagger}H + \frac{\lambda_{h\phi}}{2}\phi^{2}H^{\dagger}H - \mu_{h}^{2}H^{\dagger}H + \frac{\lambda_{h}}{2}(H^{\dagger}H)^{2}
$$

$$
\mathcal{L}_{DS} = \frac{\mu_{\phi}^{2}}{2}\phi^{2} + \frac{\mu_{3}^{2}}{3!}\phi^{3} + \frac{\lambda_{\phi}}{4!}\phi^{4} + \mu_{\chi}^{2}\chi^{*}\chi + \frac{\lambda_{\chi}}{4}(\chi^{*}\chi)^{2}
$$

$$
+ \frac{\lambda_{1}}{3!}\phi(\chi^{3} + (\chi^{*})^{3}) + \frac{\lambda_{2}}{2}\phi^{2}(\chi^{*}\chi),
$$

• $m_{\phi} < 3m_{\chi}$

semi-production Pair-production + elastic scatterings

- φ doesn't get a VEV
- Freezes-in before DM

Full Boltzmann equation

$$
2E_i\left(\partial_t - H\,p\partial_p\right)f_i(p) = C\left[f_i\right]
$$

Assume that
$$
f_{\chi} = \frac{n_{\chi}}{n_{\chi}^{eq}} f_{\chi}^{eq}(E, T_{\chi})
$$
 $T_{DM} \neq T_{SM}$

Self-scatterings maintain local equilibrium

$$
\frac{g_i}{s} \int \frac{d^3 p_i}{(2\pi)^3} f_i = Y \longrightarrow 0^{\text{th}} \text{ moment (density equation)}
$$

$$
\frac{g_i}{3n_i} \int \frac{d^3p}{(2\pi)^3} \frac{p_i^2}{E_i} \exp(-E_i/T) = T \qquad \rightarrow \text{ 2nd moment}
$$
\n(temperature equation)

cBE – couple system of Boltzmann equations

We get a system of coupled Boltzmann equations for density and temperature of DM

$$
\frac{Y'}{Y} = \frac{m_{\chi}}{x\tilde{H}} C_0 ,
$$

$$
\frac{y'}{y} = \frac{m_{\chi}}{x\tilde{H}} C_2 - \frac{Y'}{Y} + \frac{H}{x\tilde{H}} \frac{\langle p^4/E^3 \rangle}{3T_{\chi}}
$$

 C_0 , C_2 – the corresponding moments of the collision term

$$
T_\chi = y s^{2/3}/m_\chi
$$

$$
\langle p^4/E^3 \rangle \equiv n_\chi^{-1} g_\chi \int \frac{d^3 p}{(2\pi)^3} \frac{\mathbf{p}^4}{E^3} f_\chi(\mathbf{p})
$$

DM relic abundance beyond kinetic equilibrium

Solves nBE, cBE and fBE for pair-annihilation freeze-out

We use parts of the DRAKE code

- + decays
- + semi-annihilation terms
- + freeze-in

(not yet available in the public version)

https://drake.hepforge.org

[written in *Wolfram Language,* lightweight, modular and simple to use code for calculating relic abundance]

Binder, Bringmann, Hryczuk, Gustafsson 2103.01944

Evolution of density and temperature

 m_{χ} = 100 GeV, μ_{ϕ} = 1 GeV, λ_1 = 1.1 × 10⁻², λ_2 = 10⁻⁸, $\lambda_{h\phi}$ = 6 × 10⁻¹¹

Indirect detection constraints and predictions

The results of the scan:

DM production **dominated** by semi-annihilation

Blue squares \rightarrow within the reach of the future searches for φ

Potentially explain the galactic center excess (GCE)

1603.08228

Above the grey dot-dashed line \rightarrow potentially explain the core formation in dSph

1803.09762

Freeze-in from semi-production is a novel mechanism that can emerge or be incorporated into different particle physics models

Semi-production can cool down the DM population \rightarrow important for the relic density calculation

Can be tested via indirect DM searches and by searching for long-lived particles at colliders

Thank you for attention!

Backup slides

Long-lived particle searches

Constraints on the properties of the mediator φ and the prospects for its detection.

Blue points \rightarrow DM production dominated by semi-annihilation

Green points \rightarrow pairannihilation