The domain of thermal dark matter, and a hot, dark history of the Universe

Rupert Coy

Université Libre de Bruxelles (ULB), Belgium

Dark Matters, ULB, 1st December 2022

 \rightarrow PRD 104 (2021) 5 (arXiv 2105.01263) with Thomas Hambye, Michel Tytgat and Laurent Vanderheyden

ightarrow arXiv 2212.xyzab with Jean Kimus and Michel Tytgat

The domain of thermal dark matter

- Parameter space of DM is enormous, allowed mass spans dozens of orders of magnitude
- Can refine this by considering implications of production mechanism
- If DM thermalises with SM particles,
 - Cowsik-McClelland bound $\Rightarrow m_{
 m dm}\gtrsim 50$ eV $_{
 m Cowsik+McClelland,\ PRL\ '72}$
 - ${\, \bullet \,}$ In almost all cases, BBN constrains $m_{\rm dm} \gtrsim 10$ MeV

e.g. Sabti+, JCAP '20; Fields+, JCAP '20; exception in Berlin+Blinov, PRL '18

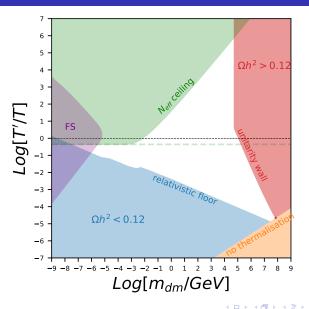
• Unitarity bound $\Rightarrow m_{
m dm} \lesssim 300~
m TeV$ Griest+Kamionkowski, PRL '90

- Suppose now that the dark sector has its own temperature, ${m T}'$
- This can be achieved in several ways, e.g. from inflationary physics
- As we vary the temperature ratio,

$$\boldsymbol{\xi} \equiv \frac{\boldsymbol{T}'}{\boldsymbol{T}} \,, \tag{1}$$

how does the allowed range of $m_{\rm dm}$ change?

The domain



∃ →

Here focus on the three most important model-independent constraints:

1. The relativistic floor

2. The unitarity wall

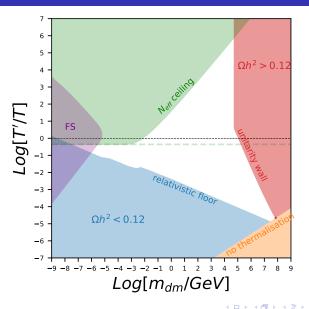
3. The $N_{\rm eff}$ ceiling

• Start with a very simple observation: the DM relic abundance depends on its mass and yield, $Y \equiv n/s$,

$$\Omega_{\rm dm} \propto m_{\rm dm} Y_{\rm dm} \tag{2}$$

- Smallest possible mass is found by taking the largest possible yield, the relativistic one: for $\xi < 1$, $Y_{\rm dm} \approx T'^3/T^3 = \xi^3$
- Given $\Omega_{\rm dm}h^2 = 0.12$, this implies a fixed contour of $m_{\rm dm}\xi^3$, up to g_* effects Hambye+Vanderheyden, JCAP '20; Hambye+Lucca+Vanderheyden, PLB '20;

The domain



∃ →

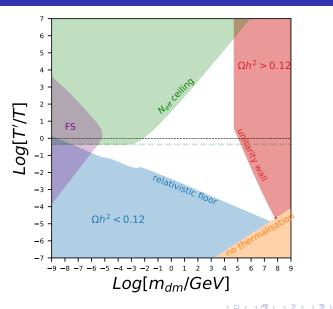
- Similarly, largest possible mass is found by taking the smallest possible number density: DM annihilates away as quickly as possible, with (σv) at the unitarity limit
- Freeze-out calculation with $\xi \lesssim 1$ (hence $ho \gg
 ho'$) gives

$$\Omega_{\rm dm}h^2 \simeq 4.7 \times 10^8 \frac{g_{\rm dm}g_{*,\rm dec}^{1/2} x_{\rm dec}' \boldsymbol{\xi}}{g_{*s,\rm dec}m_{\rm Pl}\langle \boldsymbol{\sigma} \boldsymbol{v} \rangle {\rm GeV}} \tag{3}$$

and $\langle \sigma m{v}
angle \propto 1/m_{
m dm}^2$, giving a contour of constant $m_{
m dm}^2 \xi$

• When $\xi \gg 1$, freeze-out is independent of visible sector: the result is independent of T and hence of ξ , obtain $m_{
m dm}\gtrsim 50g_{
m dm}^{1/4}$ TeV

The domain



э

- When the dark sector is relativistic, $ho' \propto T'^4$, thus $ho' < 0.3
 ho_{
 u}$ at BBN if $\xi \lesssim 0.5$
- For larger ξ, DM must be non-relativistic by BBN, which corresponds roughly to the condition

$$m_{
m dm} \gtrsim \xi T_{
m BBN}$$
 (4)

• Putting everything together gives the ranges for a Dirac fermion,

$$1 \text{ keV} \lesssim m_{\rm dm} \lesssim 52 \text{ PeV} \tag{5}$$
$$1.4 \times 10^{-5} \lesssim \xi \lesssim 6.9 \times 10^5 \tag{6}$$

- Just saw that $\xi \gg 1$ can in principle be allowed
- Very little investigation in the literature: is it really possible?
- In particular, two things to worry about:
 - 1. Can we have dark-visible interactions which are weak enough to allow $\xi \gg 1$ but strong enough so that the dark mediator decays before BBN
 - 2. What is the effect of entropy production?
- Since the domain was model-independent, can a specific model even **extend** the allowed parameter space?

The model

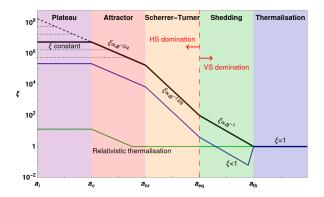
- Dark QED, with dark matter χ and dark photon mediator γ' , such that $m_{\gamma'} < m_{\chi}$, with kinetic mixing parameter ε
- The DM freezes out via $\chi \bar{\chi} \to \gamma' \gamma'$, then slow $\gamma' \to f \bar{f}$ decays
- Coupled differential equations after χ freeze-out,

$$a\frac{dn'}{da} + 3n' = \frac{\Gamma_{\gamma'}}{H} \left[\frac{K_1(x)}{K_2(x)} n'_{eq}(T) - \frac{K_1(x')}{K_2(x')} n'(T') \right] \quad (n \text{ transfer})$$
(9)

where
$$x^{(')} \equiv m_{\gamma'}/T^{(')}$$

Evolution of the system

• Solution breaks into 3-5 regime, depending on whether many γ' decay relativistically or not

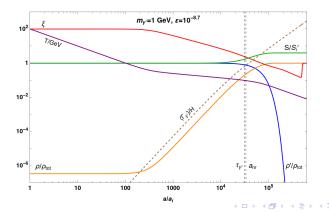


• At some point the γ' are no longer thermalised, \mathcal{T}' is an **effective temperature**

Rupert Coy

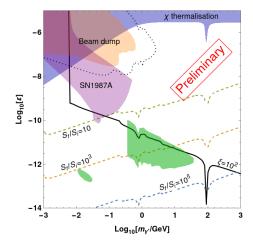
A specific example

- All five phases present in this case
- $\xi_i=$ 100, but $ho'/
 ho_{
 m tot}\ll$ 1 by $T\sim$ 30 MeV
- Baryogenesis a challenge here since dilution of η by $\sim \xi^3$



Dark photon parameter space

• Bound corresponds to $au_{\gamma'} \lesssim$ 0.2s, taking ho'/
ho < 0.04 at BBN



Berger+Jedamzik+Walker, JCAP '16; Hardy+Lasenby, JHEP '17; Bauer+Foldenauer+Jaeckel, JHEP '18;...

Rupert Coy

• If the γ' decays while relativistic, entropy production is minimal: conservation of energy gives

$$\frac{S_f}{S_i} \approx (g_*/g'_*)^{1/4}$$
 (10)

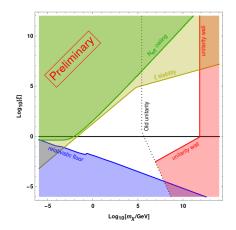
 $\bullet\,$ Greater entropy production if γ' decays non-relativistically, with

$$\frac{S_f}{S_i} \approx \frac{\tau_{\gamma'}}{t_{\rm nr}} \approx \frac{m_{\gamma'}}{\sqrt{\Gamma_{\gamma'} m_{\rm Pl}}} \tag{11}$$

• Entropy dilution allows one to go beyond the unitarity limit

see e.g. Berlin+Hooper+Krnjaic, PLB '16; PRD '16

 Accounted for entropy dilution, also imposed that ξ is well-defined, i.e. on plateau when DM freezes out



- \bullet Considered DM freeze-out for dark sector with temperature ${\cal T}'$
- Found the allowed DM domain as a function of $m_{\rm dm}$ and T'/T, with $m_{\rm dm} \in [1.0 \text{ keV}, 52 \text{ PeV}]$ and $\xi \in [1.4 \times 10^{-5}, 6.9 \times 10^5]$
- Showed that $\xi \gg 1$ is indeed possible in dark QED
- Entropy dilution due to mediator decays stretches the domain, allowing $\xi \lesssim 10^{-6}$ and $m_\chi \lesssim 10^{12}$ GeV, but additional limit from stability of ξ
- Hot dark sectors are rare, rich and relevant

Back-up slides

Rupert Coy

The domain of thermal dark matter

Dark Matters, ULB 20

æ

The $N_{\rm eff}$ ceiling

- At BBN, $\Delta N_{
 m eff} \lesssim 0.3$
- The DM contribution is

$$\Delta N_{\rm eff} = \frac{60g_{\rm dm}\xi^4}{7\pi^4} \left(\frac{11}{4}\right)^{4/3} \int_{m_{\rm dm}/T'_{\rm BBN}}^{\infty} dz \frac{z^2 \sqrt{z^2 - m_{\rm dm}^2/T'_{\rm BBN}^2}}{e^z \pm 1}$$
(12)

- For $m_{\rm dm} \ll T'_{\rm BBN} = \xi T_{\rm BBN}$, have $\Delta N_{\rm eff} \sim \xi^4$, so require $\xi \lesssim 0.5$ independently of the DM mass
- Larger ξ is possible as long as the DM is non-relativistic, i.e. $m_{\rm dm}\gtrsim {\cal T}_{\rm BBN}'$

- We have in mind the simplest kind of FO, $\chi \overline{\chi} \to \psi \overline{\psi}$, but what else could happen?
 - Co-annihilation, $\chi\phi\to\psi\eta,$ then unitarity limit will be on the heavier of χ,ϕ
 - DM is asymmetric, in which case a larger cross-section is required, and the unitarity bound on the DM mass is stronger
 - DM may be composite, conceivably with $\sigma \sim r_{
 m dm}^2 \gg 1/m_{
 m dm}^2$ see e.g. Harigaya+, JHEP '16
- The first two cases are subject to the general bounds of the domain, the third is beyond our scope

- Assumed the DM sector thermalises—need to check this is true
- At some very high temperature above all relevant scales of the DM interaction, $\Gamma \sim \alpha'^2 T'$, and this entered into equilibrium at

$$T'_{\rm eq} \simeq \alpha'^2 \xi^2 \frac{M_{Pl}}{\sqrt{g_*}}$$
 (13)

- The value of Γ/H typically peaks around $T' \sim m_{\rm dm}$: for larger T', $H \propto T^2$ grows faster than Γ , while for smaller T' the DM abundance is Boltzmann-suppressed
- \bullet DM barely equilibrates if ${\it T}_{\rm eq}^\prime\simeq{\it T}_{\rm FO}^\prime\sim{\it m}_{\rm dm}$

The thermalisation constraint

• Solving for $T'_{\rm eq}=m_{\rm dm}$ gives

$$\xi \simeq \sqrt{\frac{m_{\rm dm} g_*^{1/2}}{\alpha'^2 M_{Pl}}} \,. \tag{14}$$

- For smaller ξ , the DM does not equilibrate
- If there is some heavier mass involved, e.g. some other dark sector mass, m', then the bound is increased by $m_{\rm dm} \to m'$
- Doing this more carefully by solving $T'_{eq} = T'_{FO}$ for the unitarity cross-section gives a similar result
- Combining relativistic floor, thermalisation cellar and unitarity wall, find $m_{\rm dm} \leq$ 52 PeV and $\xi \geq$ 1.4 \times 10⁻⁵ if DM is a Dirac fermion