GRAVITATIONAL DARK MATTER PORTAL IN EXTRA DIMENSIONS

N. Rius

With N. Bernal, A. Donini and M.G. Folgado,

JHEP 01 (2020) 161, JHEP 09 (2020) 142, Eur.Phys.J.C 81 (2021) 3, 197

Dark Matters 2022, Brussels

1) Introduction

2) Freeze-out DM

3) Freeze-in DM

4) Summary and outlook

1) Introduction

• Only gravitational evidence of DM ...

Xdims

- ... but maybe in extra dimensions there are possible observational signatures
- Extra Dimension theories were proposed at the end of the XX century in order to solve the hierarchy problem.
- Large Extra-Dimensions (LED) extra dimensions flat
- Randall-Sundrum (RS) warped extra dimensions
 Clockwork/Linear Dilaton (CW/LD)
 Giudice, McCullough, JHEP 02(2017)036

Mini-review of extra dimension scenarios

5-Dimensional Metric

$$ds^{2} = e^{2\sigma(y)} (\eta_{\mu\nu} dx^{\mu} dx^{\nu} - e^{-2l\sigma(y)} r_{c}^{2} dy^{2})$$

Large Extra-Dimensions Randall-Sundrum Clockwork/Linear Dilaton

•
$$\sigma(y) = 0$$

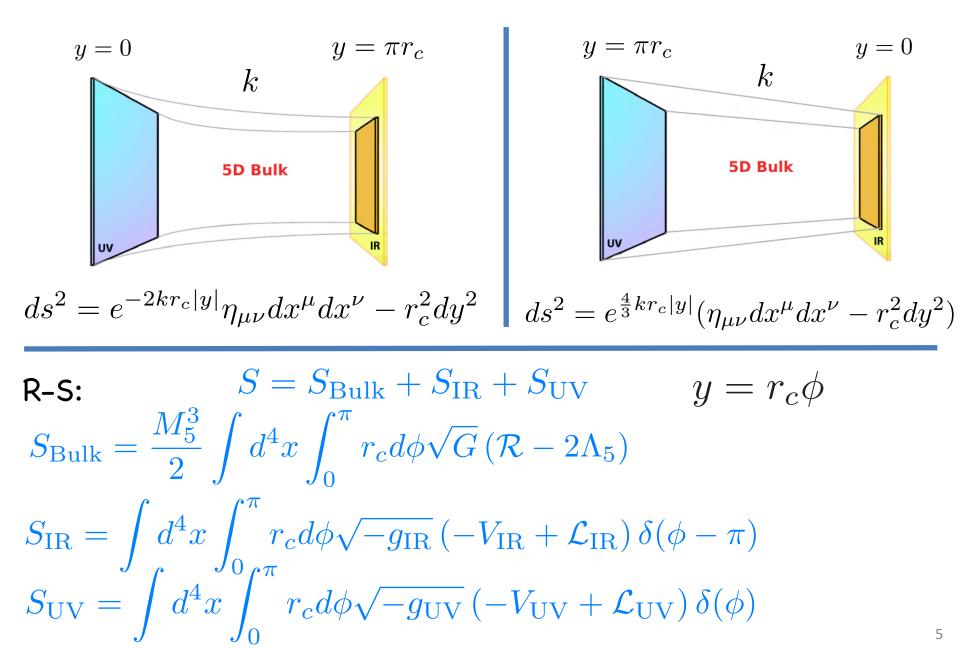
 $\bar{M}_{pl}^2 = M_5^3 2 \pi r_c$
Volume factor

•
$$\sigma(y) = -kr_c|y|$$

•
$$l=1$$

$$\bar{M}_{pl}^2 = \frac{M_5^3}{k} (1 - e^{-2k\pi r_c})$$

 $k, M_5 \sim \bar{M}_{pl}$


•
$$\sigma(y) = \frac{2}{3}kr_c|y|$$

•
$$l = 0$$

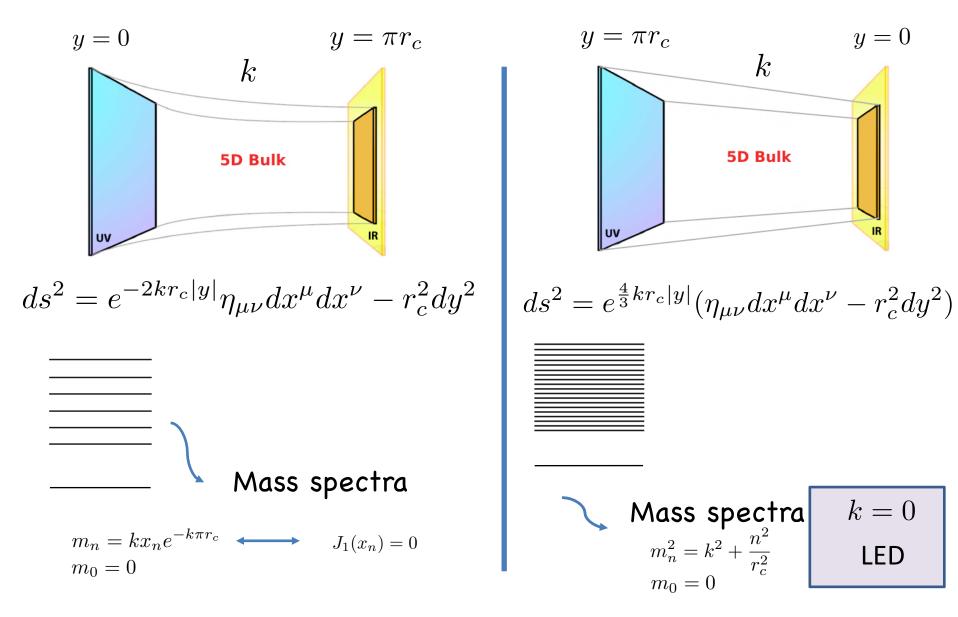
$$\bar{M}_{pl}^2 = \frac{M_5^3}{k} (e^{2k\pi r_c} - 1)$$
Warping factor
$$k, M_5 \ll \bar{M}_{pl}$$

Randall-Sundrum

Clockwork/LD

- 5D Graviton field $g_{\mu
 u}=\eta_{\mu
 u}+h_{\mu
 u}$
- KK decomposition: $\hat{h}_{\mu\nu}(x,y) = \sum_{n=0}^{\infty} h_{\mu\nu}^n(x) \frac{\chi_n(y)}{\sqrt{r_c}}$

 $(\eta^{\mu\nu}\partial_{\mu}\partial_{\nu} + m_n^2)h_{\mu\nu}^n(x) = 0$


- In R-S: $\chi^n(y) = \frac{e^{2\sigma(y)}}{N_n} \left[J_2(z_n) + \alpha_n Y_2(z_n) \right] \qquad z_n(y) = m_n / k e^{\sigma(y)}$
- In CW/LD: $\chi_n(y) = N_n e^{-ky} [\sin(\beta_n y) + \omega_n \cos(\beta_n y)]$

5D massless graviton

4D tower massive KK gravitons

Randall-Sundrum

Clockwork/LD

Brane distance stabilization mechanism

The distance between the two 4D-branes is determined by r_c , to stabilise dynamically this distance a scalar field in the 5D-bulk is introduced (Radion).

Randall-Sundrum

 $m_r
ightarrow rac{\text{New Free}}{\text{parameter}}$

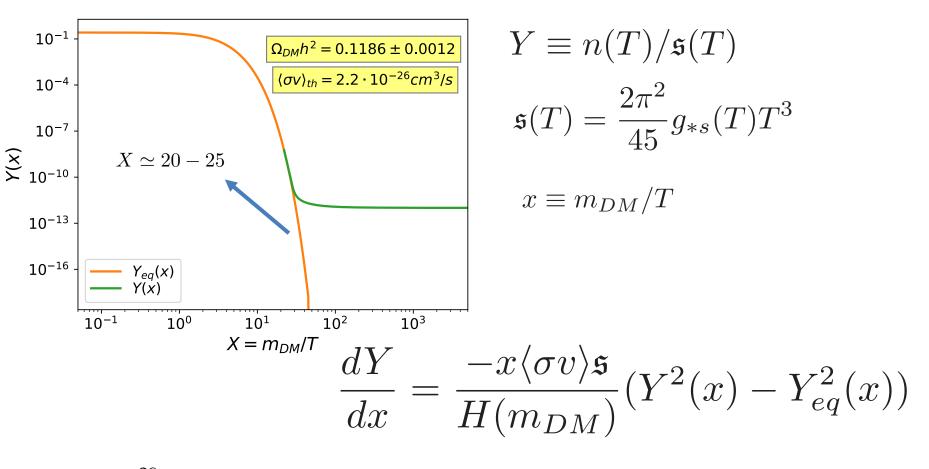
Goldberger-Wise mechanism: typically $m_r < m_1$

Clockwork/Linear Dilaton

- Already present bulk dilaton field (Φ_n).
- The 5D dilaton field can be written as a KK tower:

$$m_r^2 = m_{\Phi_0}^2 = \frac{8}{9}k^2$$
$$m_{\Phi_n}^2 = k^2 + \frac{n^2}{r_c^2}$$

- Here, I focus on Randall-Sundrum scenario (dual to a 4D strongly interacting model)
- SM and DM in the IR brane
- CW/LD studied in A. Donini, M.G. Folgado, N. Rius, JHEP 04 (2020) 036, N. Bernal et al., JHEP 04 (2021) 061
- From the weak field expansion of the metric:

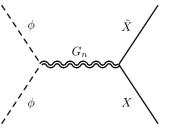

 $ds^{2} = e^{-2kr_{c}y}e^{-2r}(\eta_{\mu\nu} + \hat{h}_{\mu\nu})dx^{\mu}dx^{\nu} - (1+2r)^{2}dy^{2}$

• Graviton-matter interaction:

$$\mathcal{L} = -\frac{1}{M_5^{3/2}} T^{\mu\nu}(x) h_{\mu\nu}(x, y = \pi) = -\frac{1}{M_P} T^{\mu\nu}(x) h_{\mu\nu}^0(x) - \frac{1}{\Lambda} \sum_{n=1}^{\infty} T^{\mu\nu}(x) h_{\mu\nu}^n(x)$$

- Radion-matter interaction:
 $$\begin{split} &\Lambda = \bar{M}_{pl} e^{-\pi k r_c} \\ &\mathcal{L}_r = \frac{1}{\sqrt{6}\Lambda} r T + \frac{\alpha_{\rm EM} \, C_{\rm EM}}{8\pi\sqrt{6}\Lambda} r F_{\mu\nu} F^{\mu\nu} + \frac{\alpha_S C_3}{8\pi\sqrt{6}\Lambda} r \sum_a F^a_{\mu\nu} F^{a\mu\nu} \end{split}$$
- Gravitational field interactions (3rd order expansion) Gravitational portal to DM in Xdims N. Rius

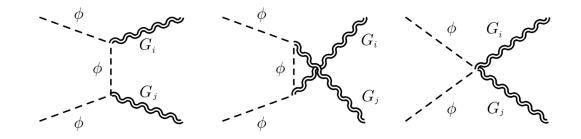
2) Freeze-out DM


$$\langle \sigma v \rangle \sim \int_{4m_{DM}}^{\infty} ds (s - 4m_{DM}) \sqrt{s} \sigma_{an}(s) K_1(\sqrt{s}/T)$$

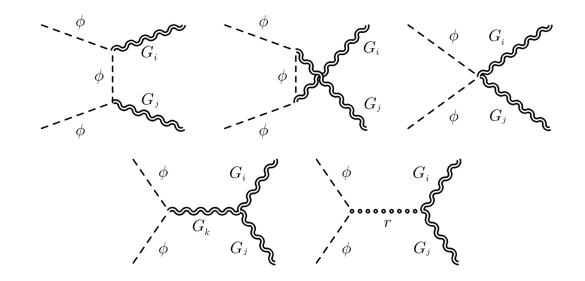
= $2.2 \times 10^{-26} cm^3/s$

Gravitational portal to DM in

Xdims

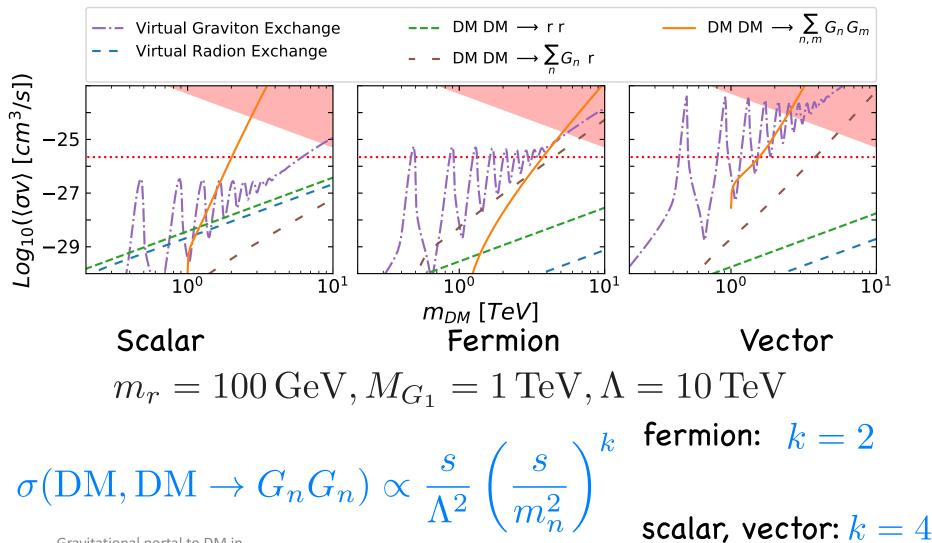

N. Rius

Only DM-SM scattering (mediated by KK gravitons) Rueter, Rizzo, Hewett, JHEP 10 (2017) 094



- SM + DM in the IR brane
- 3rd generation quarks in the IR brane, fermions near the UV brane, gauge fields in the bulk (avoid LHC strong bounds)
- All SM in the bulk, with different BLKTs (to explain fermion masses and CKM mixing matrix)
- DM annihilation into KK gravitons Min Lee, Park, Sanz Eur.Phys.J.C 74 (2014) 2715, JHEP 05 (2014) 063
- DM and Higgs in the IR brane, SM in the UV brane
- Only DM in the IR brane

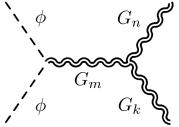
		Scalar Fermion Vector
ϕ \tilde{X} G_n ϕ X	$\phi \qquad \tilde{X}$	Graviton Virtual Exchange v^4 (d) v^2 (p) v^0 (s)
		Radion Virtual Exchange v^0 (s) v^2 (p) v^0 (s)
		Annihilation into Gravitons v^0 (s) v^0 (s) v^0 (s)
		Annihilation into Radions v^0 (s) v^2 (p) v^0 (s)
/		Annihilation into Radion + Graviton $ v^0(s) v^0(s) v^0(s)$



			Scalar	Fermion	Vector
ϕ \tilde{X} G_n ϕ X	ϕ \tilde{X} r ϕ X	Graviton Virtual Exchange	v ⁴ (d)	v ² (p)	v ⁰ (s)
		Radion Virtual Exchange	$ v^0(s)$	v ² (p)	v ⁰ (s)
		Annihilation into Gravitons	v ⁰ (s)	v ⁰ (s)	v ⁰ (s)
		Annihilation into Radions	v^0 (s)	v ² (p)	v ⁰ (s)
/		Annihilation into Radion + Graviton	v ⁰ (s)	$ v^0(s) $	v ⁰ (s)

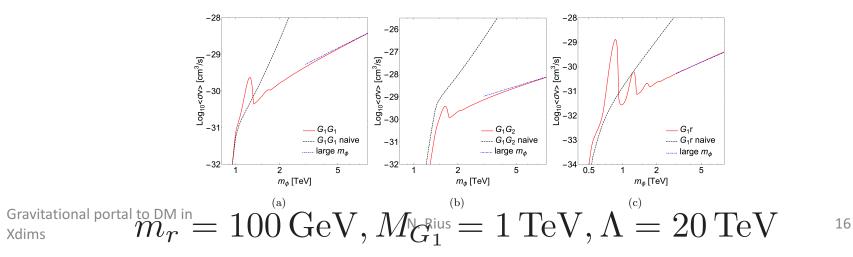
			Scalar	Fermion	Vector
$\tilde{X} \phi$ \tilde{X}	$\tilde{X} \phi$ \tilde{X}	Graviton Virtual Exchange	v^4 (d)	v ² (p)	v ⁰ (s)
G_n		Radion Virtual Exchange	v ⁰ (s)	v ² (p)	v ⁰ (s)
	φ Χ	Annihilation into Gravitons	$ v^0 (s)$	v ⁰ (s)	v ⁰ (s)
		Annihilation into Radions	v ⁰ (s)	v ² (p)	v ⁰ (s)
/	/	Annihilation into Radion + Graviton	$ v^0 (s)$	v ⁰ (s)	v ⁰ (s)
Gravitational portal to Xdims	ϕ G_i	ϕ ϕ G_n $G_$	\mathcal{G}_{G_n}	ϕ G_n ϕ r ϕ r r ϕ r	۰۰۰۰ ۰۰۰

Anomalous enhancement due to the sum over massive KK graviton polarizations



Gravitational portal to DM in Xdims

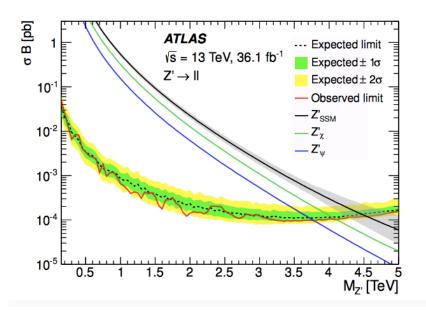
N. Rius


Scalar DM

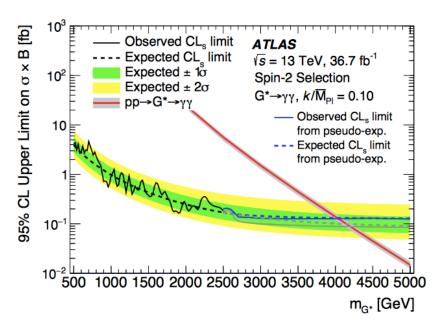
- It is needed to sum over the infinite tower of KK gravitons in the s channel
- Giorgi, Vogl, JHEP 04 (2021) 143; JHEP 11 (2021) 036

Subtle cancellations due to sum rules of Bessel functions (wave functions of KK gravitons)

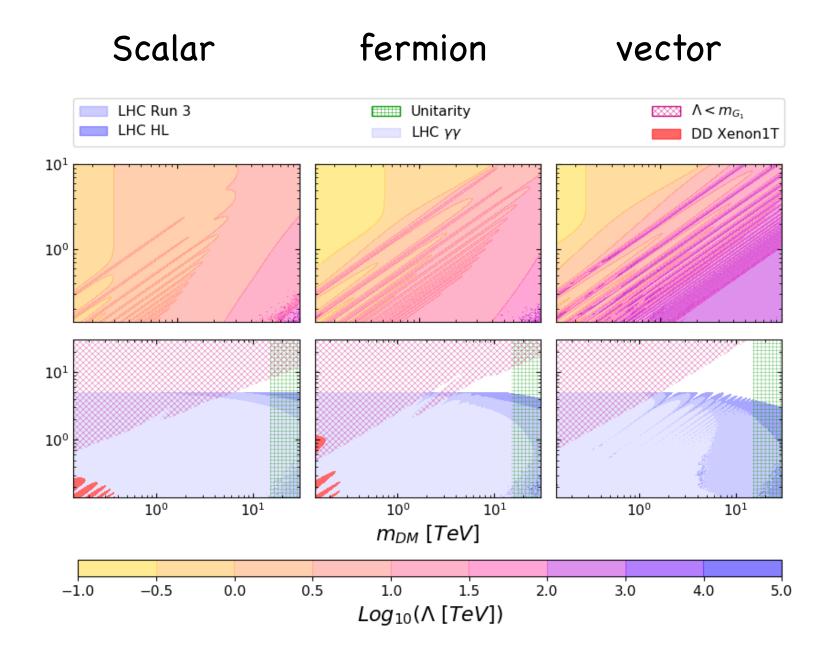
Radion contribution is also essential


Final result, as expected : $\sigma(\mathrm{DM},\mathrm{DM}\to G_nG_n)\propto rac{s}{\Lambda^2}$

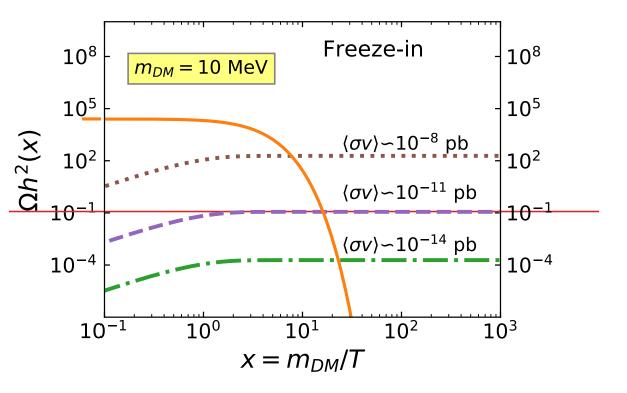
Analogous result for


$$\sigma(\mathrm{DM},\mathrm{DM} \to G_n r) \propto \frac{s}{\Lambda^2} \left(\frac{s}{m_n^2}\right)^2$$

- Vector and fermion DM, as well as CW/LD: work in progress with A. Donini, G. Landini, A. Muñoz


Bounds from resonance searches at LHC

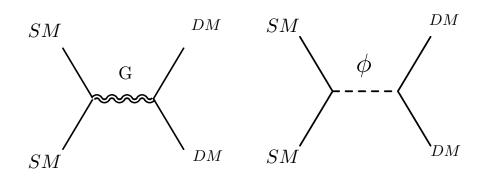
ATLAS: Search for new phenomena in highmass dilepton final₁ states using 37^{fb} (1707.02424)



ATLAS: Search for new phenomena in highmass diphoton final states using 37 fb^{-1} (1707.04147)

Gravitational portal to DM in Xdims

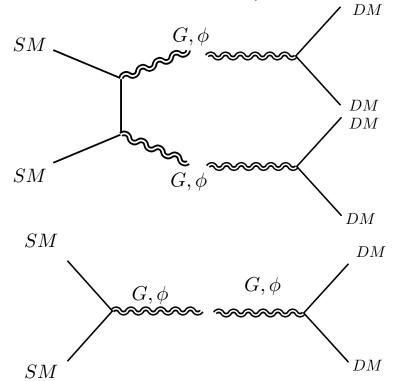
3) Freeze-in DM



DM is a Feebly Interacting Massive Particle (FIMP) It never reaches thermal equilibrium

Scalar DM

Direct Freeze In


 DM production via virtual graviton and radion exchange

Relevant when G,ϕ are in thermal equilibrium or T < m_r , m_1

Sequential Freeze In

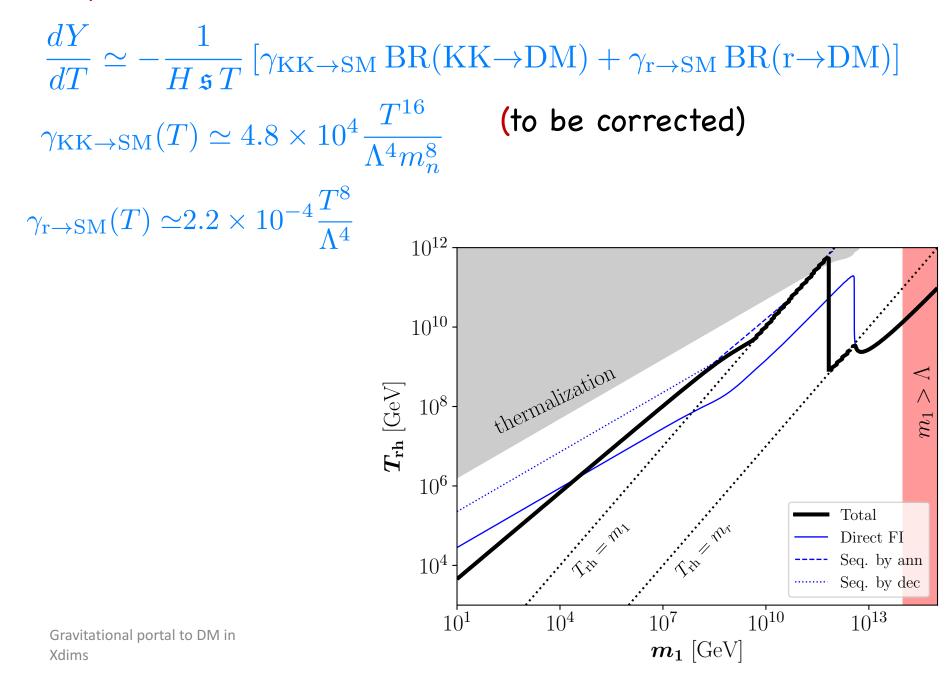
• DM production via graviton and radion decay.

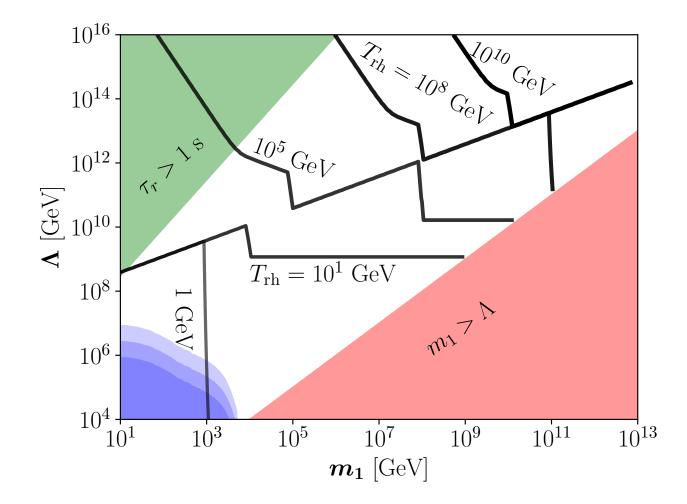
- Sequential freeze-in: Boltzmann equations for DM, G and ϕ
- SM-G_n G_m scattering suffers from unphysical divergence when $m_1 \ll s \sim T^2$ (work in progress)
- Approx. solutions:
- 1) Direct freeze-in: $T < m_r$

$$\frac{dY}{dT} \simeq \frac{\gamma_{\rm DM \to SM}}{H \,\mathfrak{s} \, T} \left[\left(\frac{Y}{Y^{\rm eq}} \right)^2 - 1 \right] \simeq -\frac{\gamma_{\rm DM \to SM}}{H \,\mathfrak{s} \, T}$$
$$\sigma_{\rm DM \to SM}(s) \simeq \frac{49}{1440\pi} \frac{s^3}{\Lambda^4} \left| \sum_{n=1}^{\infty} \frac{1}{s - m_n^2 + i \, m_n \, \Gamma_n} \right|^2 + \frac{s^3}{288\pi\Lambda^4} \frac{1}{(s - m_r^2)^2 + m_r^2 \, \Gamma_r^2}$$

$$Y_0 \simeq \frac{3 \times 10^{-1}}{g_{*s}} \sqrt{\frac{10}{g_*}} \left(\frac{M_P}{m_r^4 \Lambda^4}\right)$$

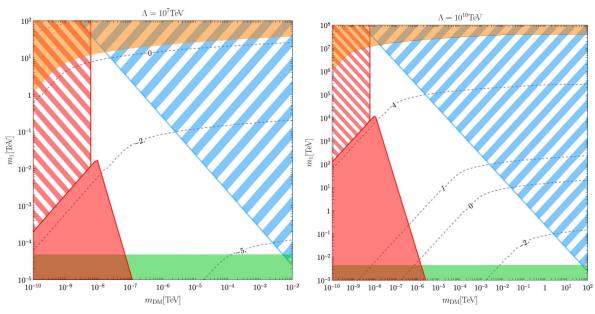
Gravitational portal to DM in Xdims


2) Sequential freeze in via inverse decays:


$$\frac{dY}{dT} \simeq \frac{\gamma_{\rm KK\to SM}^d}{H\,\mathfrak{s}\,T} \left[\frac{Y_K}{Y_K^{\rm eq}} - 1 \right] \,\mathrm{BR}(\mathrm{KK\to DM}) + \frac{\gamma_{\rm r\to SM}^d}{H\,\mathfrak{s}\,T} \left[\frac{Y_r}{Y_r^{\rm eq}} - 1 \right] \,\mathrm{BR}(\mathrm{r\to DM}) \\ \simeq -\frac{1}{H\,\mathfrak{s}\,T} \left[\gamma_{\rm KK\to SM}^d \,\mathrm{BR}(\mathrm{KK\to DM}) + \gamma_{\rm r\to SM}^d \,\mathrm{BR}(\mathrm{r\to DM}) \right]$$

Summing over G_n with $m_n < T_{rh}$:

$$Y_{0} \simeq \frac{2.2 \times 10^{-4}}{g_{*s}} \sqrt{\frac{10}{g_{s}}} \frac{M_{P} T_{rh}^{2}}{m_{1} \Lambda^{2}} + \frac{3.5 \times 10^{-2}}{g_{*s}} \sqrt{\frac{10}{g_{s}}} \frac{M_{P} m_{r}}{\Lambda^{2}} \left(\frac{z}{z+37}\right)$$
$$z_{n} \equiv \left(1 - 4\frac{m_{\chi}^{2}}{m_{n}^{2}}\right)^{5/2},$$
$$z \equiv \sqrt{1 - 4\frac{m_{\chi}^{2}}{m_{r}^{2}}} \left(1 + 2\frac{m_{\chi}^{2}}{m_{r}^{2}}\right)^{2}$$


3) Sequential freeze in via annihilations

Fermionic DM

- Only sequential freeze-in via inverse decays
- Radion contribution suppressed, since $\propto {\rm m^2}_{\rm DM}$
- Constraints from velocity distribution of DM: too fast due to KK graviton late decays

Giorgi, Vogl, arXiv:2208.03153

Gravitational portal to DM in Xdims

N. Rius

Thermalization BBN ($\tau_1 > 10s$) Warm DM bound meshed: KK no LL Strong dependence on T_{rh} Constant T_{rh}

4) Summary and outlook

- Importance of summing over all KK graviton modes to recover unitarity
- WIMP DM freeze-out strongly constrained by LHC (unless SM is not confined on the IR brane)
- Giving up the hierarchy problem, plenty of room for FIMP DM freeze-in
- To do:
- Sum rules for fermion and vector scattering to G_n G_m, and G_n r in RS scenario (Donini, Landini, Muñoz)
- Sum rules for other Xdim models: CW/LD, Flat
 Construct full inflationary models (Bernal, Cosme, Donini)²⁷