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• Goal: reconstruction of halo clustering and halo mass function of DM-only
cosmological simulations generated by the EAGLE project

• The EAGLE project

(25 Mpc)3 box with 3763 particles 𝑀ℎ ∈ (109, 1012)M☉, (12.5 Mpc)3 box

• Approach: direct calibration of a analytical halo model/simulator based on a toy 

implementation of two body correlation functions on DM-only simulations

FOF halo finder

Particle data
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Model/ 

simulator

• The toy halo model 

Effective parameters of a 

clustering toy model  
Number of 
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Model/ 

simulator

• The toy halo model 

• What is inside the simulator?

• Given an image, we want to know which parameters, θ, generated it

𝒙~𝑝 𝒙 𝒛 = 𝑝 𝒙 𝜽,𝝎

latent variables, ω

Simulator

latent variables 

𝜽 =( Ν, 𝑎 , ε, n )

physical parameters



• Given some simulation 𝒙, and a model with parameters 𝒛, what can we learn about 𝒛?
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• Given some simulation 𝒙, and a model with parameters 𝒛, what can we learn about 𝒛?

• Evidence: 𝑝 𝒙 = ׬ )𝑑𝒛 𝑝 𝒙 𝒛 𝑝(𝒛
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• Almost always, we want to calculate marginal posteriors of the parameters of interest, 𝝑

𝑝 𝝑 𝒙 = ඲𝑑𝜼 𝑝(𝜼, 𝝑|𝒙) =
)𝑝 𝒙 𝝑 𝑝(𝝑

)𝑝(𝒙

Intractable due to high dimensionality

• Posterior: 𝑝(𝒛|𝒙)

• Likelihood: 𝑝(𝒙|𝒛)

• Prior: 𝑝(𝒛)

• Bayes theorem, gives the joint posterior for the full parameter space

nuisance

parameters

This problem appears in the context 

of likelihood-based inference methods,

e.g., MCMC
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Marginal Neural Ratio Estimation (MNRE)

Estimates posteriors through a binary classification problem:

“Given a (parameter: 𝝑, image: 𝒙) pair, is the image, 𝒙, actually generated by the parameter 𝝑?”

Class 1: Class 2:

(𝒙, 𝝑’) ~ 𝑝(𝒙)𝑝(𝝑)(𝒙, 𝝑) ~ 𝑝 𝒙|𝝑 𝑝(𝝑)

𝑟(𝒙, 𝝑) ≅
𝑝 𝒙|𝝑

𝑝 𝒙
=
𝑝(𝝑|𝒙)

𝑝(𝝑)

Train a classifier with mock data to directly estimate:

Once we have trained the network, we can estimate the posterior:

𝑝 𝝑|𝒙 = 𝑟(𝒙, 𝝑)𝑝(𝝑)

arXiv: 2107.01214
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Training with swyft
arXiv:2107.01214
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Training with swyft
arXiv:2107.01214

• Physical parameters:

o N: Number of halos, where N ϵ (100, 2100)

o a : Inner slope of the halo mass function,         

where a ϵ (1, 3) 

o ε: Exponent of the density field, where  ε ϵ (0,2)

o n: Slope of the power spectrum, where n ϵ

(0,10)
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arXiv:2107.01214
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Training with swyft

• We train using 200.000 mock images

• We define a CNN:

arXiv:2107.01214

o N: Number of halos, where N ϵ (100, 2100)

o a : Inner slope of the halo mass function,         

where a ϵ (1, 3) 

o ε: Exponent of the density field, where  ε ϵ (0,2)

o n: Slope of the power spectrum, where n ϵ

(0,10)

• Physical parameters:
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Results on mock data
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Results on actual N body simulations 

trained NN

• one simulation box
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Results on actual N body simulations 

1D Posteriors

mode correct value

trained NN

• one simulation box



different box 

orientations

Results on actual N body simulations 

• 4 simulation boxes and 

3 rotations of them
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Comparison of a N-body simulation and a mock image
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• Using a toy halo model and MNRE

o we reconstructed the halo mass function

o we generated images similar to DM-only N-body simulations
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• Using a toy halo model and MNRE

• Long-term goal

Thank you!

o we reconstructed the halo mass function

o we generated images similar to DM-only N-body simulations

a analytical model for haloes, subhaloes, clustering and baryonic matter 

that generates actual N-body simulations  
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Dark Matter Galaxies

Evolution of structure in the Universe (top to bottom)

Large enough halos are sites of star and galaxy formation

Credit: Volker Springel
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Identifying Dark Matter Haloes

Haloes with arbitrary shapes, i.e., it’s difficult to assign a mass to them

Define a boundary: the virial radius 𝑟ℎ within which the mean internal

matter density is: 𝜌ℎ = 200𝜌𝑐
0

Connect particles that are close to each other

The mass of the halo, 𝑀ℎ, is defined as the total mass contained within the radius 𝑟ℎ

FOF Halo Finders
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The Eagle Project

• Using the FOF halo finder: 

 Read halo masses. 

 Pick haloes with masses that belong to a specific mass range, e.g. (109, 1012) M☉.

 Define sub volumes of the 25 Mpc3box, e.g., 12.5 Mpc3, 12.5x 12.5x 5 Mpc3 boxes.

 Read the centers of potential (x, y, z coordinates) of those haloes.

 Pick the haloes that belong to those boxes and count their number.
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• Using the Particle data: 

 Read particle group numbers

 Select particles that belong to the haloes that we picked before from the FOF halo 

finder

 Read the coordinates of those particles (x,y,z coordinates)

 Construct a heatmap with 100 bins by projecting the z direction

 Multiply the counts of the histogram with the mass of the particles: 1.15 · 107M☉

and divide with xedge · yedge of the histogram i.e., 125 · 102 kpc2
Examples:

The Eagle Project
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The Model

• The first physical parameter is the number, N, of the haloes.

• The masses of the haloes, Mh∈ (109, 1012) M☉, can be sampled from a halo mass function:                      
𝑑𝑛

𝑑𝑀
= 𝑏𝑀𝑎 .

• From the masses of the haloes, we can calculate their concentrations c:  

log10𝑐 = 1.4986 − 0.02499log10 Τ𝑀 𝑀☉ 1 + 0.00565 log10 Τ𝑀 𝑀☉ 2
(Correa et al., 2015b)

• The second physical parameter is the slope, 𝑎, of the halo mass function, while: 

𝑏 = 1 − 𝑎 ⋅
𝑁

1012 1−𝑎 − 109 1−𝑎 𝑉
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• Now, we want to place the haloes in 

the 2D sky:
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• Now, we want to place the haloes in 

the 2D sky:

 We construct a 100x100 grid whose values correspond to pairs 

of x and y coordinates where (x, y) ∈ (0,12.5) Mpc.
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Adding Clustering to the Model

• Will sample the positions according to distributions generated from 2D realizations of gaussian random 

fields on an 100x100 grid.

• The gaussian fields will be specified by a power-law power spectrum:                    

𝑃 𝑘 =
1

𝑘𝑛

• The slope of the power spectrum, n, is the third physical parameter of our model.



Constructing the Realizations of the Gaussian Fields

• We generate position space realization of a white noise field, 𝜑𝑎𝑏, with unit amplitude, on a 100x100 

grid, i.e., a,b ∈ {0,..,99}.

• We Fourier transform the white noise realization: 𝜑𝑎𝑏 → 𝜑𝑘𝑎𝑘𝑏, where 𝑘𝑎, 𝑘𝑏 ∈
2𝜋

𝛮
{0,..,99}.

• → 𝜑𝑎𝑏
𝑘

• We want to multiply 𝜑𝑘𝑎𝑘𝑏 with 𝑃 𝑘 to get 𝛿𝑘𝑎𝑘𝑏 .

𝑘 = 𝑘𝑎
2 + 𝑘𝑏

2• Naive wa𝑦: Calculate P(k) at points                                              leads to imaginary fields

• Αlternatively: Calculate P(k) at points 𝑘 = 𝑘𝑎
′2 + 𝑘𝑏

′2,   where 𝑘′𝑎 , 𝑘′𝑏 ∈
2𝜋

𝛮
{0,..,50,−49,… , −1}.

• 𝛿𝑘𝑎𝑘𝑏= 𝑃 𝑘 𝜑𝑘𝑎𝑘𝑏

• 𝛿𝑘𝑎𝑘𝑏 → 𝛿𝑎𝑏
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Realizations of the Gaussian Fields

23
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Adding Clustering to the Model

• We transform the field 𝛿𝑎𝑏 to a probability distribution function in order to sample from it:

 We first multiply 𝛿𝑎𝑏 with a fourth physical parameter ε,

 We exponentiate 𝛿𝑎𝑏 ⋅ ε,

 We normalize the field 𝑓 = 𝑒𝛿𝑎𝑏⋅𝜀, s.t., its values sum to 1.

 The samples that we obtain are pairs of i and j indices of the 100x100 grid of the field 𝑓.

 The positions X,Y of the haloes, are the values of the  x,y coordinates of the 2D-sky at the indices 

i, j. 

• Now, we are ready to sample the positions of the haloes according to this distribution.

24
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• Now, we want to place the haloes in the 

2D sky:

 We construct a 100x100 grid whose values correspond to pairs 

of x and y coordinates where (x, y) ∈ (0,12.5) Mpc.

 For each one of the N haloes, we sample its coordinates X ,Y 

coordinates from distributions generated from 2D realizations 

of gaussian random fields.

 We subtract the coordinates of each halo (as pairs of X,Y 

values) from the values x, y of the grid and we end up with N 

grids.

 For each grid, we calculate the root sum square of the two 

values in each one of its cells, i.e., the projected radius of the 

halo. 
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• Now, we want to place the haloes 

uniformly in the 2D sky:

 For each halo we calculate the surface density:

 We set the values of the pixels that correspond to 𝑟’>2.7𝑟ℎ
equal to 1.

 We add all the images of the individual haloes together to 

obtain the total surface density field

 We add poisson noise to the final image. 

2𝑟𝑠 𝑟′ ⋅ 𝑟𝑠 − 𝑟′2 + 2𝑟𝑠 ⋅ 𝑟′ ⋅ arctan
𝑟′ ⋅ 𝑟′ − 𝑟𝑠

𝑟′ ⋅ 𝑟′ + 𝑟𝑠
⋅ 𝑟′2 − 𝑟𝑠

2

𝑟′ ⋅ 𝑟𝑠
4 − 2𝑟𝑠

2𝑟′2 + 𝑟′4
f (𝑟′)=

where: 𝑟𝑠 =
3𝑀ℎ

Τ1 3

800𝜋𝜌𝑐
0 Τ1 3𝑐
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Joint vs marginal samples

1) Examples for H0, jointly sampled from (𝒙,𝝑)∼ 𝑝(𝒙|𝝑) 𝑝(𝝑) 

2) Examples for H1, marginally sampled from  (𝒙,𝝑)∼ 𝑝(𝒙) 𝑝(𝝑) 

Data: 𝒙=Image, Label: 𝝑 ϵ {Cat, Donkey}
Credit: C. Weniger
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Loss function

• Strategy: We train a neural network 𝑑𝜑(𝒙,𝝑) ϵ [0,1] as binary classifier to estimate the

probability of hypothesis H0 or H1. The Network output can be interpreted,

for a given input pair 𝒙 and 𝝑, as probability that H0 is true.

• H0 is true: 𝑑𝜑(𝒙, 𝝑) ≃ 1

• H1 is true: 𝑑𝜑(𝒙,𝝑) ≃ 0

• The corresponding loss function is the so-called “binary cross-entropy”:

𝐿[𝑑(𝒙,𝝑)] = −න ]𝑑𝒙𝑑𝜽 [𝑝(𝒙,𝝑)ln(𝑑(𝐱,𝝑)) + 𝑝(𝒙)𝑝(𝝑)ln(1 − 𝑑(𝒙,𝝑))

𝑑𝜑(𝒙,𝝑) ≈
)𝑝(𝒙,𝝑

)𝑝(𝒙,𝝑) + 𝑝(𝒙)𝑝(𝝑

• Minimizing that function w.r.t the network parameters φ yields:

Credit: C. Weniger
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Likelihood-to-evidence ratio

Training binary classification networks yield true Bayesian posterior estimates!

• With a bit of math one can show that:

𝑟(𝒙, 𝝑) ≡
൯𝑑𝜑(𝒙,𝝑

൯𝑑𝜑(𝒙,𝝑 −1
≈

)𝑝(𝒙|𝝑

)𝑝(𝒙
=

)𝑝(𝝑|𝒙

)𝑝(𝝑

• Once we have trained the network 𝑑𝜑(𝒙, 𝝑), we can estimate the posterior:

)𝑝(𝝑|𝒙 ≃ 𝑟(𝒙, 𝝑) )𝑝(𝝑

Credit: C. Weniger

• Swyft: a flexible and powerful tool for efficient marginal posterior estimation 

using NN, designed by B. Miller et al. (2020, 2021).
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• Until now, using our model and Swyft we were able:

 to reconstruct the halo mass function 

 and to produce images like those of N body simulations! 

• As a next step we can test if we can identify the lowest mass of the haloes in these images.

 We set the values of the parameters a, ε and n equal to the modes of their combined posteriors.

To do that:

 Instead of sampling haloes with masses: Mh∈ (109, 1012) M☉, 

we will sample masses: Mh∈ (10𝑐 , 1012) M☉,

 where c is a new parameter of our model.

42



Results on actual N body simulations 

12
45


