Dark Matter in the form of Compact
Objects
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Top Hat Spherical Collapse

* The Friedmann Equation gives
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Formation of PBH

- Actual perturbations are not completely spherical

 To form a PBH, the hoop conjecture should be satisfied

C < 27ry

* In a RD Universe, the pressure plays a double role:

|. It makes the collapsing perturbation more spherical, so it easier the satisfy the hoop conjecture

2. The pressure impedes the collapse, so large perturbations are needed in order for M to be
larger than the Jeans mass.

* In a eMD Universe, there is no pressure. The lack of pressure from one hand facilitates the

collapse but the same time small deviations from sphericity can grow larger thus making harder to
satisfy the hoop conjecture.



GW Preduction

- To first order in perturbation theory scalar, vector and tensor perturbations are decoupled.
This means that no GW can be produced from scalar perturbations in that order.
One needs to go to 2nd order
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GW Proeduction

* Perturbation theory is not valid through the whole collapse process.

* The turnaround in linear theory happens at 0lin=1.062 and perturbations theory is not
trustworthy soon after the turnaround since 0>>|

* The part of the collapse from maximum expansion to black hole or halo formation is not
covered by perturbation theory. This part could potentially give a strong signal especially in a

virialization process where shell crossing and oscillations can induce large quadrupole
moments

- We implement a nonlinear approach, hopefully capturing more accurately the form of the
produced GW,



Collapse in early Matter Domination

« The absence of pressure magnifies deviations from sphericity leading to the formation of the
so called Zel'dovich pancakes. Different shells start oscillating and crossing each other, forming

eventually a virialized bound halo.

we focus from the

perturbation theory is perturbation

valid up to here limit to here
( / Virialization
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* If the collapsing pancake satisfies at some point the hoop conjecture, a PBH forms and there is
no further virialization stage.



Zel'dovich Pancakes
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GW Preduction

Doroshkevich probability density for deviations from sphericity 70
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GW Production

We focus on the time interval between tmax and tcol or ten whichever happens first

We break the interval in N subintervals [ti, ti +5t]

- 1 ‘com t -
dEcw (o, B,7) = E 15> w’ g |Q (w)]? Ir 530) JFpla, B,v)dadBdy dInw
~ ZN D

Dalianis CK 21

To save computational time we take N=1.This introduces a horizontal error ~2

We have to integrate over Q, 3,y

We need to insert a step function so the reheating takes place after the collapse

If we want to form PBH, the hoop conjecture should be satisfied



GW Signal for 100% DM centribution
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This is the region where PBH could consist 100% of the dark matter abundance.

Smaller ywm create larger signal
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PTA Detection
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PBH formed in eMD avoid exclusion from PTA unlike the corresponding scenarios in RD.

.| ¢
inRD [~ EI‘fC[\/?OI there is a threshold in 0 to produce sufficient number of PBH

Ve can build easier a PBH population. Therefore for the same

. f _ = 9
ineMD  folo) = 0.0560 number of PBH, RD produces stronger GWV signal than eMD.
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Evaporating PBH at LIGO and ET
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* Evaporating PBH can be probed in LIGO/Virgo & ET

* The peak can be at a different place compared to PBH formed in RD because ym can be
much smaller

- If the evaporation leaves a Planck remnant, these PBH could explain 100% of DM relic
abundance



Simulating Vielent Relaxation
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Why Dark Matter Self-Interactions!?

Problems with Collisionless Cold Dark Matter
e (Core-cusp profile in dwarf galaxies

* “Too big to fail”

* Diversity Problem

e Supermassive Black Holes

Can asymmetric dark matter with self-interactions form its own compact objects?



Asymmetric Bosonic Dark Stars
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Gravitational Waves from Dark Stars
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Tidal Deformations of Dark Stars

How stars deform in the presence of an external gravitational field?
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Fermation of Asymmetric Dark Stars

Collapse can proceed via dark photon Bremsstrahlung Cooling
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Relativistic Proton Capture rate
Dark stars can accrete protons and electrons
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Dark Star Outbursts

after capture there is a thermalisation stage where protons settle in a thermal radius
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Dark Star Outbursts

Temperature Luminosity
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Outbursts can last from days to months

At first the photon luminosity scales as 7’172)T2 ~ 12 / T

As temperature reduces, the luminosity and the energy loss increase dramatically until the
thermal radius becomes opaque for the photons.
At this point the spectrum becomes the blackbody one with luminosity~7"2

there is one extra power of T due to the thermal radius dependence on T.



Conclusions

Gravitational Wave Production in a eMD era

* Perturbation theory fails after maximum expansion

- Zeldovich method is valid until violent relaxation

- eMD formed PBH can avoid PTA constraints because it is easier to make BH
 Can be distinguished from RD formation

- Can be tested in current and future interferometers

Dark Stars

+ Could form by a strongly self-interacting component of dark matter

* Dark stars can be distinguishable from black holes or neutron stars merger events

* They could have significant luminosity outbursts once they accrete sufficient
baryonic and leptonic matter



