Cosmic radiation backgrounds from primordial black holes

Francesco Ziparo 30/11/2022

SCUOLA NORMALE SUPERIORE

Radio Background

X-ray Background

CHANDRA

ARCADE2

Excess fitted by:

 $\left(\frac{\nu}{310MHz} \right)$ $T_b(\nu) = 24.1 \pm 2.1$

[Fixsen +ll]

Excess fitted by:

$$T_b(\nu) = 24.1 \pm 2.1 \left(\frac{\nu}{310MHz}\right)$$

[Fixsen +11]

The observed value is 5 times higher then the one expected from known radio sources

CHANDRA

Unresolved excess

	Table 3 Unresolved Extragalactic CXB Fluxes	
BAND keV	Extragal. erg s ⁻¹ cm ⁻² deg ⁻²	%
uCXB		
0.5-1.0	1.24 ± 0.17	23.0
1.0-2.0	1.66 ± 0.06	36.5
0.5-2.0	2.90 ± 0.16	30.1
2.0-10.0	6.47 ± 0.82	31.8
nsCXB		
0.5-1.0	$0.36_{-0.11}^{+0.13}$	6
1.0-2.0	$0.61^{+0.07}_{-0.07}$	13
0.5-2.0	$0.97^{+0.18}_{-0.16}$	ç
2.0-10.0	$3.45^{+1.42}_{-1.19}$	17

Note. In units of 10^{-12} erg s⁻¹ cm⁻² deg⁻².

[Cappelluti et al. +17]

CHANDRA

Unresolved excess

	Table 3 Unresolved Extragalactic CXB Fluxes	
BAND keV	Extragal. erg s ^{-1} cm ^{-2} deg ^{-2}	%
uCXB		
0.5-1.0	1.24 ± 0.17	23.0
1.0-2.0	1.66 ± 0.06	36.5
0.5-2.0	2.90 ± 0.16	30.1
2.0-10.0	6.47 ± 0.82	31.8
nsCXB		
0.5-1.0	$0.36^{+0.13}_{-0.11}$	6
1.0-2.0	$0.61^{+0.07}_{-0.07}$	13
0.5-2.0	$0.97^{+0.18}_{-0.16}$	9
2.0-10.0	$3.45^{+1.42}_{-1.19}$	17
Note. In units o	of 10^{-12} erg s ⁻¹ cm ⁻² deg ⁻² .	

[Cappelluti et al. +17]

PBHs Mass distribution

PBHs Mass distribution

Novel approach

Novel approach

Novel approach

GALACTIC

Inside Dark Matter Halos

Baryon density distribution

$$\rho_b(r) = \rho_0 \exp\left(-\frac{\mu m_p}{2k_B T_{vir}} [v_e^2(0) - v_e^2(r)]\right)$$

[Makino +98]

Normalization set by fixing
$$\frac{M_b}{M_h} = \frac{\Omega_b}{\Omega_{DM}}$$

Inside Dark Matter Halos

Baryon density distribution

$$\rho_b(r) = \rho_0 \exp\left(-\frac{\mu m_p}{2k_B T_{vir}} [v_e^2(0) - v_e^2(r)]\right)$$

[Makino +98]

Normalization set by fixing
$$\frac{M_b}{M_h} = \frac{\Omega_b}{\Omega_{DM}}$$

Navarro-Frank-White profile

$$\rho_{DM}(r) = \frac{\delta_c \rho_c}{r/r_s (1 + r/r_s)^2}$$

Number of PBHs in the halo

$$N_{\rm PBH}(M_h) = \underbrace{f_{\rm PBH}}_{M_{\rm PBH}} \qquad f_{\rm PBH} = \frac{\Omega_{\rm PBH}}{\Omega_{\rm DM}}$$

Primordial black holes accretion

[Ziparo +22]

Primordial black holes accretion

[Ziparo +22]

-INTERGALACTIC -

Large scale evolution

Coherent evolution of the temperature and ionization state of the IGM

PBHs impact on neutral regions

PBHs impact on neutral regions

COSMOLOGICAL

X-ray background

X-ray background

X-ray background

New Constraint

$$f_{PBH} \le 3 \times 10^{-4} \left(\frac{30}{M_{P}}\right)^{2}$$
We provide a strong constration on f_{PBH} for $M_{PBH} = 30 M_{PBH}$

Radio background

	$f_{PBH} = 1$
<u> </u>	$f_{PBH} = 0.1$
<u> </u>	$f_{PBH} = 10^{-2}$
•••••	$f_{PBH} = 10^{-3}$
	$f_{PBH}=10^{-4}$
•	Data

 10^{4}

$f_{\rm PBH}$	$T_b(z=0)/K$	$T_b(z=17)/\mathrm{K}$	
1	0.402	579.67	
0.1	0.123	174.42	
0.01	0.035	42.81	
10^{-3}	0.009	7.59	
10^{-4}	0.002	1.10	

 $- \cap$

 $T_{b,obs}(z=0) = 0.48$ K

[Ziparo +22]

Summary

Formulation of a new PBHs accretion model inside Dark Matter Halos Set a new constraint on the fraction of Dark Matter into PBHs Match the intensity of the X-ray background **excess** Recover 1% of the observed radio

background excess

Back up

Velocities in halos

Secondary ionization

Relative Fluxes

Velocities in halos

$$-2$$

 -1
 -2
 -3
 -4

Accretion constraints

 $M_{\rm PBH} \ [M_{\odot}]$

[Ziparo et al. submitted]

PBHs formation

Gaussian Field

$$P(\delta) = \frac{1}{\sqrt{2\pi\sigma^2}} exp(-\frac{\delta^2}{2\sigma^2})$$

PBHs Abundance

$$\Omega_{PBH} = \int_{\delta_c} M(\delta) P(\delta) d\delta$$

