

Dark Matters 2022

Constraints on primordial black holes from observation of stars in dwarf galaxies

Nicolas Esser & Peter Tinyakov

arXiv:2207.07412

Outline

Introduction

Probability of star destruction by a PBH

- I. PBH capture during star formation
- 2. Sinking of the PBHs and star destruction
- Ultra-faint dwarf galaxies
- Constraints

Introduction

Numerous constraints ∃ for various mass ranges

lgure: B. Carr et al. (2021)

Introduction

 Numerous constraints ∃ for various mass ranges

 However PBHs of asteroïd-mass ~ 10²⁰ g remain unconstrained

igure: B. Carr et al. (2021)

Introduction

- Numerous constraints ∃ for various mass ranges
- However PBHs of asteroïd-mass ~ 10²⁰ g remain unconstrained

igure: B. Carr et al. (2021)

We aim to derive constraints on these atomic-sized PBHs through their capture by main sequence stars

PBH capture during star formation

4 × 10⁶ PBHs with Maxwellian distribution around a protostellar cloud, integrated on the bound trajectories with small angular momentum :

$$\overline{\rho}_{\rm DM} = 4\pi\rho_{\rm DM} \left(\frac{3}{2\pi\sigma^2}\right)^{3/2} \frac{{\rm v}_{\rm esc}^3}{3} \quad \propto \quad \frac{\rho_{\rm DM}}{\sigma^3} \tag{1}$$

PBH capture during star formation

4 × 10⁶ PBHs with Maxwellian distribution around a protostellar cloud, integrated on the bound trajectories with small angular momentum :

$$\overline{\rho}_{\rm DM} = 4\pi\rho_{\rm DM} \left(\frac{3}{2\pi\sigma^2}\right)^{3/2} \frac{{\rm v}_{\rm esc}^3}{3} \quad \propto \quad \frac{\rho_{\rm DM}}{\sigma^3} \tag{1}$$

EoM in the contracting cloud solved numerically :

PBH capture during star formation

4 × 10⁶ PBHs with Maxwellian distribution around a protostellar cloud, integrated on the bound trajectories with small angular momentum :

$$\overline{\rho}_{\rm DM} = 4\pi\rho_{\rm DM} \left(\frac{3}{2\pi\sigma^2}\right)^{3/2} \frac{{\rm v}_{\rm esc}^3}{3} \quad \propto \quad \frac{\rho_{\rm DM}}{\sigma^3} \tag{1}$$

EoM in the contracting cloud solved numerically :

Final r_{min} and r_{max} computed for each PBH

Sinking of the PBHs - two conditions on r_{max} :

Sinking of the PBHs - two conditions on r_{max} :

1. Capture time $< t_*$ (10¹⁰ yr) :

Sinking of the PBHs - two conditions on r_{max} :

L Capture time $< t_*$ (10¹⁰ yr) :

2. Deviation : increase of r_{min} due to nearby stars located at distance d < main star's radius R_* :

$$r_{\rm crit} = \left(\frac{4096}{225\pi^2}R_*d^6\right)^{1/7} \propto m_{\rm BH}^0$$
 (3)

Sinking of the PBHs - two conditions on r_{max} :

Capture time $< t_*$ (10¹⁰ yr) :

2. Deviation : increase of r_{min} due to nearby stars located at distance d < main star's radius R_* :

$$\mathbf{r}_{crit} = \left(\frac{4096}{225\pi^2} R_* d^6\right)^{1/7} \propto \mathbf{m}_{BH}^0$$
 (3)

Destruction of the star by accretion - no limit for the considered mass range :

$$t_{acc} = \frac{c_s^3}{4\pi\rho_*G^2m_{BH}} \sim 10^6 \text{ yr for a } 10^{20} \text{ g PBH}$$
 (4)

Probability of star destruction

 $N_{BH,i}$ - PBHs with $r_{min} > R_*$ - PBHs with $r_{max} > r_{crit}$ = $N_{BH,f}$

N_{BH,i} = 4 × 10⁶ PBHs
 N_{BH,f} = # of PBHs that are captured

 $\begin{array}{l} & \frac{N_{BH,f}}{N_{BH,i}} \times \overline{\rho}_{DM} \times R_{B}^{3} = \overline{M}_{cap}, \mbox{ the mean captured PBH mass} \\ & \end{tabular} \label{eq:probability} \mbox{ Probability of destruction}: \xi = 1 - \exp\left(-\frac{\Omega_{PBH}}{\Omega_{DM}}\frac{\overline{M}_{cap}}{m_{BH}}\right) \\ & \longrightarrow \Omega_{PBH}/\Omega_{DM} < \frac{m_{BH}}{\overline{M}_{cap}}\ln\left(\frac{1}{1-\xi}\right) \end{array}$

Ultra faint dwarf galaxies (UFD)

DM dominated galaxies, with high DM density and low mean velocity dispersion ($\rho_{\rm DM} \sim 200 \ {\rm GeV/cm^3}$, $\sigma \sim 7 \ {\rm km/s}$)

 \rightarrow Interesting for us (cf. eq (1)) since $\overline{M}_{cap} \propto \frac{\rho_{DM}}{-3}$

 Major improvements in their census recently (cf. e.g. J.D. Simon (2019) for a review)

Name	$\sigma~[{ m km/s}]$	$ ho_{ m DM}~[m GeV/cm^3]$	$\left(rac{ ho_{ extsf{DM}}}{100 extsf{ GeV/cm}^3} ight) \left(rac{7 extsf{ km/s}}{\sqrt{2}\sigma} ight)^3$
Triangulum II	< 5.9	$<160\pm80$	0.95 ± 0.51
Tucana III	< 2.1	$< 3.7 \pm 1.8$	0.51 ± 0.22
Segue 1	$6.4^{+2.4}_{-1.9}$	85^{+100}_{-85}	$0.39^{+0.85}_{-0.72}$
Solar system	~ 220	~ 0.4	$\sim 10^{-8}$

Constraints

Figure: N. Esser & P. Tinyakov (2022), constraints on the abundance of PBHs in Triangulum II, with $\xi = 0.5$ (blue) and $\xi = 0.2$ (orange).

Constraints

Figure: N. Esser & P. Tinyakov (2022), constraints on the abundance of PBHs in Triangulum II, with $\xi = 0.5$ (blue) and $\xi = 0.2$ (orange).

Future prospects

- We are currently working on a way to determine the maximum fraction ξ of stars destroyed during the lifetime of a given UFD
- We need to refine the accretion process (especially taking into account the rotation of the star) in order to clear out the constraints at low (< 10¹⁸g) masses
- New UFD data that would allow us to obtain more precise and more stringent constraints

Thank you for your attention !

Nicolas Esser

Research group in theoretical physics (ULB)

arXiv:2207.07412

Figure: Captured mass as a function of the PBH mass. Statistical uncertainties are not visible on the plot. From N. Esser & P. Tinyakov (2022).