Post-Detection of Dark Matter using Gravimetry and GNSS

Michal Cuadrat-Grzybowski (25/10/2022)

Image: O. Welcomme for ROB

What are the Different Scales of Dark Matter?

Courtesy for slide: Bruno Bertrand (ROB)

What are the Different Scales of Dark Matter?

How to detect Dark Matter in the Solar System?

> Dark Matter clumps or PBH gravitationally attracted by Solar System (or even Earth)

Potential of detection of Dark Matter clump fly-bys near Earth!

> Major Assumption:

Dark Matter only interacts gravitationally with normal matter

- For this we have:
 - GNSS (Global Navigation Satellite System) constellations
 - Network of Superconducting Gravimeters
 - Two Earth-sized detectors with 20 years of data = FREE
 UDelft

Credit: Bruno Bertrand

How can we use GNSS and gravimetry data to post-detect Dark Matter Signals?

How can we use GNSS and gravimetry data to post-detect Dark Matter Signals?

Research Question 1: What is the possible abundance, velocity and number of flybys of Dark Matter in the Solar System and in the Earth's vicinity?

Research Question 2: How can a Dark Matter gravitational signal be modelled and translated to known observables?

Research Question 3: What is the detection sensitivity related to relevant Dark Matter characteristics?

This presentation

Modelling Tools Dark Matter Signals

- Characteristics of a DM clump orbit:
 - Keplerian Hyperbolic Orbit,
 - DM clump mass independent,
 - Impact parameter \pmb{B} , excess hyperbolic velocity \pmb{v}_∞ and Keplerian angles.

- Signal obtained from 3rd –Body perturbation:
 - DM clump mass dependent!
 - GNSS: orbital deviation
 - Gravimeters: gravity residual

I) What is the possible abundance, velocity and number of fly-bys of Dark Matter in the SolarSystem and in the Earth's vicinity?

Orbital Elements Intermezzo

- Characteristics of a Keplerian orbit:
 - *a*: semi-major axis,
 - e: eccentricity,

TUDelft

- *i*: inclination angle,
- Ω : RAAN (Right Ascension of Ascending Node),
- ω : Argument of periapsis (\rightarrow defines pericentre),
- ν: True anomaly (actual dynamic element)*

*: Sometimes the mean anomaly is used.

Fly-by flux:

TUDelft

- *d*: closest approach distance to Earth,
- $V_{DM/Earth}$: DM velocity (w.r.t Earth) at distance d,
- F_g : gravitational focus factor of Earth.

 $\rho_{DM} = 0.009 \frac{M_{\odot}}{\mathrm{pc}^3}$

 V_∞ : Maxwellian Distribution

B: Uniform distribution

Fly-by flux:

- d: closest approach distance to Earth,
- $V_{DM/Earth}$: DM velocity (w.r.t Earth) at distance d,
- F_g : gravitational focus factor of Earth.

 $\rho_{DM} = 0.009 \frac{M_{\odot}}{\mathrm{pc}^3}$

 V_∞ : Maxwellian Distribution

B: Uniform distribution

- > Fly-by flux:
 - *d*: closest approach distance to Earth,
 - $V_{DM/Earth}$: DM velocity (w.r.t Earth) at distance d,
 - F_g : gravitational focus factor of Earth.

 $\rho_{DM} = 0.009 \frac{M_{\odot}}{\mathrm{pc}^3}$

 V_∞ : Maxwellian Distribution

B: Uniform distribution

- Fly-by flux:
 - d: closest approach distance to Earth,
 - $V_{DM/Earth}$: DM velocity (w.r.t Earth) at distance d,
 - F_g : gravitational focus factor of Earth.

 $\rho_{DM} = 0.009 \frac{M_{\odot}}{\mathrm{pc}^3}$

 V_∞ : Maxwellian Distribution

B: Uniform distribution

Captured and ejection flux (three-body capture):

Steady-state mass $\sim 10^{13}$ kg \rightarrow double increase in density

II) How can a Dark Matter gravitational signal be modelled and translated to known observables?

Case scenario to be investigated

Characteristics of DM clump:

- > Clump Mass: $m_{DM} = 10^{15}$ kg,
- > Highly energetic trajectories $\rightarrow V_{\infty} = 300$ km/s,
- Minimum possible distance found of 15500 km.

GNSS Signals - Results

From an acceleration profile to observables:

- Compute third-body perturbation,
- Translate satellite reaction into orbital elements (= observables).

Gravimeter Signals - Results

Characteristics of acceleration profiles:

- Maximum occurs near pericentre,
- Maximum and duration of signal dependency on impact parameter, excess velocity, station location and DM mass.
- High sensitivity to DM orbit relative orientation (one order of magnitude difference).

Conclusions

- ➢ Minimum possible distance of 15000 km, with a majority mainly around 0.01 AU (→ problematic for detection).
- Signal successfully modelled and provides a clear pattern for future data analysis:
 - GNSS signal very characteristic = step-like,
 - SG network signal = peak AND highly dependent on the orbital relative orientation (not the case for GNSS),
- Similar sensitivity obtained with min. mass of ~ 10¹⁵ kg at 15500 km for both gravimeters (~10⁻¹⁰ m/s²) and GNSS (~1 cm).

Future Work

- Further Model Development & Analysis:
 - Improvement of orbital models, inclusion of perturbations (=Moon, ...)
 - Local enhancement of dark matter density
 - Detailed literature study on DM and PBH models.
- Improved characterisation and use of GNSS orbital data.
- > Preliminary data analysis \rightarrow template matching using sensitivity
- LISA, GOCE (~10⁻¹² m/s²) and gravimeters on the Moon (reduced noise)

ft Thank you for listening!

Without Sun With Sun
$(B)^2$
$\rho_{DM_{eff}} \sim \rho_{DM} * \left(\frac{-}{r_p}\right)$
r _p : pericenter
B: impact parameter OR pericenter without Sun

Future Work

- Further Model Development & Analysis:
 - Improvement of orbital models, inclusion of perturbations (=Moon, ...)
 - Local enhancement of dark matter density
 - Detailed literature study on DM and PBH models.
- Improved characterisation and use of GNSS orbital data.
- Preliminary data analysis \rightarrow template matching using sensitivity
- LISA, GOCE (~10⁻¹² m/s²) and gravimeters on the Moon (reduced noise)

TUDelft Thank you for listening!

09-10-2020

23

Questions?

OMME@ANG

Observing dark Matter and MEteoroids with Gravimeters ANd GNSS

Thank you for listening!

Michal Cuadrat-Grzybowski

Density local enhancement

Conclusions

- Capture process seems to be insignificant for abundance estimations,
- ➢ Minimum possible distance of 15000 km, with a majority mainly around 0.01 AU (→ problematic for detection).
- Signal successfully modelled and provides a clear pattern for future data analysis:
 - GNSS signal very characteristic = step-like,
 - SG network signal = peak AND highly dependent on the orbital relative orientation (not the case for GNSS),
- Similar sensitivity obtained with min. mass of ~ 10¹⁵ kg at 15500 km for both gravimeters (~10⁻¹⁰ m/s²) and GNSS (~1 cm).

Gravimeter Signals & Sensitivity - Results

Characteristics of sensitivity limits:

- > Absolute maximum governed by $GM/r_{min}^2 cos(\alpha_{r_{min}})$,
- > Minimum mass of ~ 10^{15} kg (at a distance of 15000 km).
- > Signal shape essential as a basis for future *template matching*.

Gravimeter Signals & Sensitivity - Results

Characteristics of sensitivity limits:

- > Absolute maximum governed by $GM/r_{min}^2 cos(\alpha_{r_{min}})$,
- > Minimum mass of ~ 10^{15} kg (at a distance of 15000 km).
- > Signal shape essential as a basis for future *template matching*.

GNSS Signals & Sensitivity - Results

Characteristics of sensitivity limits:

10⁵

10³

- > Absolute maximum governed by GM/r_{min}^2 ,
- > Minimum mass of ~ 10^{15} kg (at a distance of 15000-20000 km).
- > Signal shape essential as a basis for future *template matching*.

Signals Results Sensitivity

- \succ Effects of *B*: change in signal duration and maximum
- Effects of V_{∞} : theoretically changes only signal duration \rightarrow initial condition problems

GNSS Signals

From an acceleration profile to observables:

- GNSS orbit assumed as Keplerian,
- Compute third-body perturbation,
- Translate satellite reaction into orbital elements (= observables).

 $\frac{\delta \boldsymbol{a}(t)}{g(t)} = -\frac{1}{g(t)} \cdot \mu_{DM} \cdot \left(\frac{\boldsymbol{r} - \boldsymbol{r}_{DM}}{||\boldsymbol{r} - \boldsymbol{r}_{DM}||^3} + \frac{\boldsymbol{r}_{DM}}{||\boldsymbol{r}_{DM}||^3}\right)$ $\frac{da}{dt} = \frac{2 \cdot a^2}{\sqrt{\mu p}} \cdot \left[e\sin(\theta) \cdot a_r + p/r_0 \cdot a_\theta\right],$ $\frac{de}{dt} = \sqrt{\frac{p}{\mu}} \cdot \left[a_r \sin(\theta) + a_\theta \cdot \left(\frac{er_0}{p} + (1 + \frac{r_0}{p}) \cos(\theta) \right) \right],$ $\frac{d\theta}{dt} = \frac{\sqrt{\mu \cdot p}}{r_o^2} - \frac{1}{e} \sqrt{\frac{p}{\mu}} \left(-a_r \cos(\theta) + a_\theta (1 + \frac{r_0}{p}) \sin(\theta) \right)$ $\frac{di}{dt} = a_z \cdot \frac{r_0}{\sqrt{\mu p}} \cdot \cos(\theta + \omega),$ $\frac{d\omega}{dt} = -\frac{d\theta}{dt} + \frac{\sqrt{\mu \cdot p}}{r_0^2} - a_z \frac{r_0}{\sqrt{\mu p}} \cot(i) \sin(\theta + \omega),$ **″**UDelft $\frac{d\Omega}{dt} = a_z \cdot \frac{r_0}{\sqrt{\mu p}} \cdot \sin(\theta + \omega) / \sin(i),$

time t [s]

time t [s]

Gravimeter Signals

Characteristics of acceleration profiles:

- > Orbits can be inside of Earth \rightarrow PREM Density model,
- Simulate updated equation of motion from integrated density model,
- Compute signal from gravimeter station and DM positions.

Radial direction!

