Post-Detection of Dark Matter using Gravimetry and **GNSS**

Michal Cuadrat-Grzybowski (25/10/2022)

What are the Different Scales of Dark Matter?

Courtesy for slide: Bruno Bertrand (ROB)

What are the Different Scales of Dark Matter?

How to detect Dark Matter in the Solar System?

➢ Dark Matter clumps or PBH gravitationally attracted by Solar System (or even Earth)

➢ Potential of detection of Dark Matter clump fly-bys near Earth!

➢ Major Assumption:

Dark Matter only interacts gravitationally with normal matter

➢ For this we have:

JDelft

- GNSS (Global Navigation Satellite System) constellations
- Network of Superconducting Gravimeters
- Two Earth-sized detectors with 20 years of data $=$ FREE

Credit: Bruno Bertrand

How can we use GNSS and gravimetry data to post-detect Dark Matter Signals?

How can we use GNSS and gravimetry data to post-detect Dark Matter Signals?

❖ **Research Question 1**: What is the possible abundance, velocity and number of flybys of Dark Matter in the Solar System and in the Earth's vicinity?

❖ **Research Question 2**: How can a Dark Matter gravitational signal be modelled and translated to known observables?

❖ **Research Question 3**: What is the detection sensitivity related to relevant Dark Matter characteristics?

This presentation

Modelling Tools Dark Matter Signals

- ➢ Characteristics of a DM clump orbit:
	- Keplerian Hyperbolic Orbit,
	- DM clump mass independent,
	- Impact parameter \bm{B} , excess hyperbolic velocity \bm{v}_{∞} and Keplerian angles.

- \triangleright Signal obtained from 3rd –Body perturbation:
	- DM clump mass dependent!
	- GNSS: orbital deviation
	- Gravimeters: gravity residual

I) What is the possible abundance, velocity and number of fly-bys of Dark Matter in the Solar System and in the Earth's vicinity?

Orbital Elements Intermezzo

- ➢ Characteristics of a Keplerian orbit:
	- *a*: semi-major axis,
	- *e*: eccentricity,

 $\stackrel{\sim}{\mathsf{T}}$ UDelft

- *i*: inclination angle,
- Ω : RAAN (Right Ascension of Ascending Node),
- ω : Argument of periapsis (\rightarrow defines pericentre),
- v : True anomaly (actual dynamic element)*

*: Sometimes the mean anomaly is used.

 \triangleright Fly-by flux:

- d : closest approach distance to Earth,
- $V_{DM/Earth}$: DM velocity (w.r.t Earth) at distance d,
- F_q : gravitational focus factor of Earth.

 $\rho_{DM} = 0.009$ pc³

V∞: Maxwellian Distribution

: Uniform distribution

 \triangleright Fly-by flux:

- d : closest approach distance to Earth,
- $V_{DM/Earth}$: DM velocity (w.r.t Earth) at distance d,
- F_q : gravitational focus factor of Earth.

 $\rho_{DM} = 0.009$ pc³

V∞: Maxwellian Distribution

: Uniform distribution

- \triangleright Fly-by flux:
	- d : closest approach distance to Earth,
	- $V_{DM/Earth}$: DM velocity (w.r.t Earth) at distance d,
	- F_q : gravitational focus factor of Earth.

 $\rho_{DM} = 0.009$ pc³

V∞: Maxwellian Distribution

: Uniform distribution

- \triangleright Fly-by flux:
	- d : closest approach distance to Earth,
	- $V_{DM/Earth}$: DM velocity (w.r.t Earth) at distance d,
	- F_q : gravitational focus factor of Earth.

 $\rho_{DM} = 0.009$ pc³

V∞: Maxwellian Distribution

: Uniform distribution

➢ Captured and ejection flux (three-body capture):

Steady-state mass $\sim 10^{13}$ kg \rightarrow double increase in density

II) How can a Dark Matter gravitational signal be modelled and translated to known observables?

Case scenario to be investigated

Characteristics of DM clump:

- \triangleright Clump Mass: $m_{DM} = 10^{15}$ kg,
- \triangleright Highly energetic trajectories \rightarrow V_{∞} = 300 km/s,
- ➢ Minimum possible distance found of 15500 km.

GNSS Signals - Results

From an acceleration profile to observables:

- \triangleright Compute third-body perturbation,
- \triangleright Translate satellite reaction into orbital elements (= observables).

Preliminary investigation: semi-major axis

Gravimeter Signals - Results

Characteristics of acceleration profiles:

- \triangleright Maximum occurs near pericentre,
- ➢ Maximum and duration of signal dependency on impact parameter, excess velocity, station location and DM mass.
- ➢ High sensitivity to DM orbit relative orientation (one order of magnitude difference).

 10^{-11}

 10^{-12}

 10^{-13}

 10^{-14}

 10^{-15}

 10^{-10}

 10^{-17}

 10^{-18}

 Ξ

 $\overline{\rho}$

PREM: Density & Gravity

Conclusions

- \triangleright Minimum possible distance of 15000 km, with a majority mainly around 0.01 AU (\rightarrow problematic for detection).
- ➢ Signal successfully modelled and provides a clear pattern for future data analysis:
	- GNSS signal very characteristic = step-like,
	- SG network signal = peak AND highly dependent on the orbital relative orientation (not the case for GNSS),
- \triangleright Similar sensitivity obtained with min. mass of ~ 10¹⁵ kg at 15500 km for both gravimeters (\sim 10⁻¹⁰ m/s²) and GNSS (\sim 1 cm).

Future Work

- ➢ Further Model Development & Analysis:
	- Improvement of orbital models, inclusion of perturbations (=Moon, …)
	- Local enhancement of dark matter density
	- Detailed literature study on DM and PBH models.
- Improved characterisation and use of GNSS orbital data.
- \triangleright Preliminary data analysis \rightarrow template matching using sensitivity
- > LISA, GOCE (\sim 10⁻¹² m/s²) and gravimeters on the Moon (reduced noise)

Thank you for listening!

Future Work

- ➢ Further Model Development & Analysis:
	- Improvement of orbital models, inclusion of perturbations (=Moon, …)
	- Local enhancement of dark matter density
	- Detailed literature study on DM and PBH models.
- Improved characterisation and use of GNSS orbital data.
- Preliminary data analysis \rightarrow template matching using sensitivity
- > LISA, GOCE (\sim 10⁻¹² m/s²) and gravimeters on the Moon (reduced noise)

TUDelft Thank you for listening!

09-10-2020 23

Questions?

OMME®ANG

Observing dark Matter and MEteoroids with Gravimeters ANd GNSS

Thank you for listening!

Density local enhancement

Conclusions

- \triangleright Capture process seems to be insignificant for abundance estimations,
- \triangleright Minimum possible distance of 15000 km, with a majority mainly around 0.01 AU (\rightarrow problematic for detection).
- ➢ Signal successfully modelled and provides a clear pattern for future data analysis:
	- GNSS signal very characteristic $=$ step-like,
	- SG network signal $=$ peak AND highly dependent on the orbital relative orientation (not the case for GNSS),
- \triangleright Similar sensitivity obtained with min. mass of ~ 10¹⁵ kg at 15500 km for both gravimeters (\sim 10⁻¹⁰ m/s²) and GNSS (\sim 1 cm).

Gravimeter Signals & Sensitivity - Results

Characteristics of sensitivity limits:

- Absolute maximum governed by $GM/r_{min}^2 cos(\alpha_{r_{min}})$,
- ≻ Minimum mass of $\sim 10^{15}$ kg (at a distance of 15000 km).
- ➢ Signal shape essential as a basis for future *template matching*.

Gravimeter Signals & Sensitivity - Results

Characteristics of sensitivity limits:

- Absolute maximum governed by $GM/r_{min}^2 cos(\alpha_{r_{min}})$,
- ≻ Minimum mass of $\sim 10^{15}$ kg (at a distance of 15000 km).
- ➢ Signal shape essential as a basis for future *template matching*.

GNSS Signals & Sensitivity - Results

Characteristics of sensitivity limits:

- Absolute maximum governed by GM/r_{min}^2 ,
- ➢ Minimum mass of ∼ 10¹⁵ kg (at a distance of 15000-20000 km).
- ➢ Signal shape essential as a basis for future *template matching*.

Signals Results Sensitivity

- \triangleright Effects of B: change in signal duration and maximum
- \triangleright Effects of V_{∞} : theoretically changes only signal duration \rightarrow initial condition problems

GNSS Signals

From an acceleration profile to observables:

- ➢ GNSS orbit assumed as Keplerian,
- \triangleright Compute third-body perturbation,
- \triangleright Translate satellite reaction into orbital elements (= observables).

$$
\frac{\delta \mathbf{a}(t)}{g(t)} = -\frac{1}{g(t)} \cdot \mu_{DM} \cdot \left(\frac{\mathbf{r} - \mathbf{r}_{DM}}{\|\mathbf{r} - \mathbf{r}_{DM}\|^3} + \frac{\mathbf{r}_{DM}}{\|\mathbf{r}_{DM}\|^3} \right)
$$
\n
$$
\frac{\frac{da}{dt} = \frac{2 \cdot a^2}{\sqrt{\mu p}} \cdot [\cosh(\theta) \cdot a_r + p/r_0 \cdot a_\theta],}{\frac{\frac{de}{dt} = \sqrt{\frac{p}{\mu}} \cdot \left[a_r \sin(\theta) + a_\theta \cdot \left(\frac{cr_0}{p} + (1 + \frac{r_0}{p}) \cos(\theta)\right)\right]},
$$
\n
$$
\frac{\frac{de}{dt}}{\frac{d\theta}{dt}} = \frac{\sqrt{\mu} \cdot \overline{p}}{r_0^2} - \frac{1}{e} \sqrt{\frac{p}{\mu}} \left(-a_r \cos(\theta) + a_\theta (1 + \frac{r_0}{p}) \sin(\theta)\right),
$$
\n
$$
\frac{\frac{di}{dt}}{\frac{di}{dt}} = a_z \cdot \frac{r_0}{\sqrt{\mu p}} \cdot \cos(\theta + \omega),
$$
\n
$$
\frac{\frac{d\omega}{dt} = -\frac{d\theta}{dt} + \frac{\sqrt{\mu \cdot p}}{r_0^2} - a_z \frac{r_0}{\sqrt{\mu p}} \cot(i) \sin(\theta + \omega),
$$
\n
$$
\frac{d\Omega}{dt} = a_z \cdot \frac{r_0}{\sqrt{\mu p}} \cdot \sin(\theta + \omega) / \sin(i),
$$

Gravimeter Signals

Characteristics of acceleration profiles:

- \triangleright Orbits can be inside of Earth \rightarrow PREM Density model,
- ➢ Simulate updated equation of motion from integrated density model,
- ➢ Compute signal from gravimeter station and DM positions.

➢ Radial direction!

09-10-2020 36