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Introduction



What are we searching for?

Nuclear decay: (A,Z) -> (A,Z+2) + 2

● 2 neutrons -> 2 protons (ΔB = 0)

● 2 electrons are emitted (ΔL = 2)
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Direct violation of L and B-L

n

n

p

p

e

e
0𝜈𝛽𝛽

time

Possible only for a few isotopes



A bit of history

1935: Goeppert-Mayer → 𝛽𝛽 decay 

1937: Majorana and Racah → the neutrino is its own antiparticle

1939: Furry → “neutrinoless 𝛽𝛽 decay” (0𝜈𝛽𝛽)

1987: Moe’s → first observation of a 𝛽𝛽 decay with neutrinos (2𝜈𝛽𝛽)

2000: SNO/SK → discovery that neutrinos oscillate → are massive
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What distinguishes neutrinos from antineutrinos?

Phenomenological differences:

● they have opposite heilicity 

● one interacts with particles, the other one 
with antiparticles (helicity=chirality)

But if they are massive how do we distinguish them 
in their rest frame?

● need to introduce ad-hoc quantum number 
(for instance L)

● accept they are not different
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helicity-flip probability  prop to neutrino mass
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A portal to new physics beyond the SM
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Dim 5: Weinberg Operator Dim 9 Dim 7 

Deppisch, Graf, Iachello and Kotila 
Phys.Rev.D 102 (2020) 9, 095016

Cirigliano et al., JHEP 12, 097 (2018)



0𝜈𝛽𝛽 and collider searches are complementary

Rate proportional to the energy scale, and a signal 
can manifest at any time!

Example: left-right symmetry

A generic search for ultrahigh-energy BSM physics
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Same as  dilepton 
signature at LHC

0𝜈𝛽𝛽 decay channel 
(dim 9 operator) 

Deppisch, Graf, Iachello and Kotila 
Phys.Rev.D 102 (2020) 9, 095016



Same diagram 

creates 𝛎↔𝛎 

Schechter and Valle

1982

What would we learn from a discovery?
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Direct violation of L and B-L A tiny, but non-zero, neutrino-antineutrino 
conversion probability



Interplay with Neutrino Physics



How to connect the rate with particle physics?
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phase space factor hadronic matrix element nuclear matrix element (NME)

Can be computed accurately

(even if sometime g is used to 
incorporate biases in NME calculations)

Requires calculations of :

● wavefunction overlap between 
initial and final states

● lepton-nucleus interaction
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nuclear matrix element (NME)

Requires calculations of :

● wavefunction overlap between 
initial and final states

● lepton-nucleus interaction
M.A., Benato, Detwiler, Menéndez and Vissani, 
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Light Majorana neutrino exchange
Parameter connected to neutrino mixing 

probabilities, masses and complex phases
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inverted mass ordering 

normal mass 
ordering 

[from
 hyper-k.org]



Light Majorana neutrino exchange
Parameter connected to neutrino mixing 

probabilities, masses and complex phases
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inverted mass ordering 

normal mass 
ordering 



Best Today 
(T1/2 > 1026 yr)

The experimental effort to date
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S. Elliot, 2021

Best Today 
(T1/2 > 1026 yr)



Best Nex Gen
(T1/2 > 1027 -- 1028 yr)

Future discovery odds for inverted ordered neutrinos
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M.A., Benato, Detwiler, Menéndez and Vissani

PRC 104, L042501 (2021)

Best Today 
(T1/2 > 1026 yr)



Future discovery odds for normal ordered neutrinos

M.A., Benato and Detwiler
 PRD 96, 053001 (2017)

Not equiprobable parameter space: random 
phases favors large m𝛽𝛽 values. 

18Matteo Agostini (UCL)

Up to 50% discovery power

next-gen goal

0𝜈𝛽𝛽 signal 

in next gen 

if Σ~ 0.1 eV

A
 
B C



Ettengruber, M.A., Caldwell, Eller and Schulz
2208.09954 

Interplay with Cosmology
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Cosmology surveys (DESI/EUCLID) close to 
measure  

0𝜈𝛽𝛽 signal 

in next gen 

if Σ≳ 0.1 eV

M.A., Benato, Detwiler, Menéndez and Vissani, 
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Experiments



Detection concepts
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● calorimetric approach: source = detector
● solid state: pixelated detector
● liquid: monolithic self-shielding volume
● energy: primary and sufficient observable
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https://doi.org/10.48550/arXiv.2202.01787


Experimental parameters
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T1/2 = 1026 year

100 -1000 moles ᐧ yr atoms  ᐧ time

N0𝜈𝛽𝛽 = atoms  ᐧ time / T1/2

T1/2 = 1028 year

10,000 -100,000 moles ᐧ yr



Experimental parameters

Step 2: Develop a detection concept able to detect each single decay without false positives

Step 3: Make it big enough
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Recent and future experiments

M.A., Benato, Detwiler, Menéndez and Vissani, arXiv:2202.01787
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completed running
in preparation
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Recent and future experiments

M.A., Benato, Detwiler, Menéndez and Vissani, arXiv:2202.01787
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Mitigation

● underground laboratory

● material selection

● shielding strategy

● multivariate analysis

● energy tagging (only way to mitigate 2vbb)

Signal & Background

Tagging 0𝜈𝛽𝛽 decay events:

● two-electron summed energy = Q-value

● two-electron event topology

● (excited states/daughter isotope)

Backgrounds:

● cosmic-ray induced 

● 238U/228Th decay chains

● neutrons

● solar neutrinos

● 2𝜈𝛽𝛽 decay (only irreducible background)
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The most sensitive technologies
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Ge Semiconductor 
detectors ( 76Ge)

Xe Time Projection 
Chambers ( 136Xe)

Large Liquid scintillator           
detectors ( 130Te,136Xe)

Cryogenic Calorimeters  
( 100Mo, 30Te)

arXiv:2202.01787 - Image courtesy of Laura Manenti
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high-purity 76Ge detectors

● ionization and charge drift

● < 0.1% energy resolution

● event topology 

liquid Ar detector

● shield and scintillation light

Staged approach:

● GERDA/MAJORANA Demonstrator (40 kg)

● LEGEND-200 under commissioning (200 kg)

● LEGEND-1000 conceptual design in preparation (1 t)

Ge semiconductor detectors
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Phys.Rev.Lett. 125 (2020) 25, 252502



● 136Xe VUV scintillation light and ionization 
electron drift -> 3D reconstruction

● background decreasing with distance from 
surface, 214Bi and 222Rn remain problematic 

● R&D to tag 0𝜈𝛽𝛽 decay daughter isotope

Xe time projection chambers
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● scintillator loaded with target isotope

● scintillation photons detected by PMTs

● photon number and arrival time gives 
event energy and position

● self-shielding and fiducialization

KamLAND-Zen-800 @Kamioka

● 750 kg of enriched Xe in nylon balloon

● backgrounds: 2𝜈𝛽𝛽, cosmogenic, 
solar neutrinos, 214Bi on balloon

● next phase: improved resolution and 
purer scintillator

Large liquid scintillators
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KZ collaboration, 2203.02139 

https://arxiv.org/abs/2203.02139


Nature 604 (2022) 7904, 53-58

Cryogenic calorimeters
● temperature variation and scintillation light

● particle identification and good resolution

● array of isotopically enriched crystals 
operated at ~10 mK
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CUORE @ LNGS

particle identification



How to gain insight on the decay channel?

● measure the electron momenta → angular distribution 

● compare decay rate in different isotopes

● combined analysis of neutrino physics, including 
cosmology

Beyond a simple rate measurement

33

M.A., Deppisch and Van Goffrier
In preparation
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Where are we heading?
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The big 4 of last decade: GERDA, EXO-200, KamLAND-Zen-400, CUORE
The two that will dominate the next few years: LEGEND-200, KamLAND-Zen-800

           The ultimate 1-ton experiments: LEGEND-1000, CUPID, nEXO
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Where are we heading?
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Scenario 1: signal just beyond current limits

● experiments will discover it within a few years

● next-gen experiments will  measures rate

● follow-up measurements of decay features

M.A., Benato, Detwiler, Menéndez and Vissani, arXiv:2202.01787M.A., Benato, Detwiler, Menéndez and Vissani, arXiv:2202.01787
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Where are we heading?
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Scenario 2: weakest signal for inverted ordered neutrinos

● need to wait next-gen experiments for a discovery
● need R&D to measure decay features

M.A., Benato, Detwiler, Menéndez and Vissani, arXiv:2202.01787
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Where are we heading?
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Scenario 3: signal even weaker or absent

● need R&D for a convincing discovery

● interplay with oscillation experiments and 
cosmology can still lead to theory breakthroughs
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Conclusions
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0𝜈𝛽𝛽 decay can lead to the direct observation of B-L violation at low-energy in a 
controlled laboratory environment

0𝜈𝛽𝛽 decay is strongly linked to L-violating Majorana neutrinos

The discovery of 0𝜈𝛽𝛽 decay would lead to a new “standard model”, with a new 
interpretation of the fundamental symmetries  and the matter-antimatter concept

A worldwide, multi-isotope experimental program is exploring an exciting 
parameter space, where a signal can be around the corner


