Search for Lepton Creation in Nuclear $\beta\beta$ Decays

Matteo Agostini
STFC Ernest Rutherford Fellow at UCL

Baryon and Lepton Number Violation (BLV2022) Université Libre de Bruxelles (ULB), Sep 5-8 2022

Most of the material taken from M.A., Benato, Detwiler, Menéndez and Vissani, arXiv:2202.01787

Introduction

What are we searching for?

Nuclear decay: (A,Z) -> (A,Z+2) + 2

- 2 neutrons -> 2 protons ($\triangle B = 0$)
- 2 electrons are emitted $(\Delta L = 2)$

Direct violation of L and B-L

Possible only for a few isotopes

A bit of history

1935: Goeppert-Mayer $\rightarrow \beta\beta$ decay

1937: Majorana and Racah \rightarrow the neutrino is its own antiparticle

1939: Furry \rightarrow "neutrinoless $\beta\beta$ decay" $(0\nu\beta\beta)$

1987: Moe's \rightarrow first observation of a $\beta\beta$ decay with neutrinos $(2\nu\beta\beta)$

2000: SNO/SK \rightarrow discovery that neutrinos oscillate \rightarrow are massive

M.A., Benato, Detwiler, Menéndez and Vissani, arXiv:2202.01787

What distinguishes neutrinos from antineutrinos?

Phenomenological differences:

- they have opposite heilicity
- one interacts with particles, the other one with antiparticles (helicity=chirality)

What distinguishes neutrinos from antineutrinos?

Phenomenological differences:

- they have opposite heilicity
- one interacts with particles, the other one with antiparticles (helicity=chirality)

But if they are massive how do we distinguish them in their rest frame?

- need to introduce ad-hoc quantum number (for instance L)
- accept they are not different

helicity-flip probability prop to neutrino mass

What distinguishes neutrinos from antineutrinos?

Phenomenological differences:

- they have opposite heilicity
- one interacts with particles, the other one with antiparticles (helicity=chirality)

But if they are massive how do we distinguish them in their rest frame?

- need to introduce ad-hoc quantum number (for instance L)
- accept they are not different

helicity-flip probability prop to neutrino mass

A portal to new physics beyond the SM

Dim 5: Weinberg Operator

$$P \propto \left(rac{
u}{\Lambda}
ight)^2 \quad ext{with } rac{
u}{\Lambda} \propto m_{etaeta}$$

Dim 7

$$P \propto \left(\frac{
u}{\Lambda}\right)^6$$

Dim 9

$$P \propto \left(\frac{
u}{\Lambda}\right)^{10}$$

Cirigliano et al., JHEP 12, 097 (2018)

Deppisch, Graf, lachello and Kotila Phys.Rev.D 102 (2020) 9, 095016

A generic search for ultrahigh-energy BSM physics

Example: left-right symmetry

 $\begin{array}{c|c} u\\ d\\ \end{array}$ $\begin{array}{c} W_R^{\pm}\\ \end{array}$ $\begin{array}{c} V_{\alpha}^{\mp(\pm)}\\ \end{array}$ $\begin{array}{c} W_R^{\pm(\mp)}\\ \end{array}$ $\begin{array}{c} Q\\ \end{array}$

Same as dilepton signature at LHC

Deppisch, Graf, lachello and Kotila Phys.Rev.D 102 (2020) 9, 095016 $0\nu\beta\beta$ and collider searches are complementary Rate proportional to the energy scale, and a signal can manifest at any time!

What would we learn from a discovery?

Direct violation of L and B-L

A tiny, but non-zero, neutrino-antineutrino conversion probability

Interplay with Neutrino Physics

How to connect the rate with particle physics?

Can be computed accurately

(even if sometime **g** is used to incorporate biases in NME calculations)

Requires calculations of:

- wavefunction overlap between initial and final states
- lepton-nucleus interaction

How to connect the rate with particle physics?

Light Majorana neutrino exchange

Parameter connected to neutrino mixing probabilities, masses and complex phases

Light Majorana neutrino exchange

Parameter connected to neutrino mixing probabilities, masses and complex phases

The experimental effort to date

Future discovery odds for inverted ordered neutrinos

Future discovery odds for normal ordered neutrinos

Not equiprobable parameter space: random phases favors large m_{gg} values.

Interplay with Cosmology

Cosmology surveys (DESI/EUCLID) close to measure $\Sigma = \sum_i m_i$

M.A., Benato, Detwiler, Menéndez and Vissani,
Matteo Agostini (UCL)

arXiv:2202.01787

Ettengruber, M.A., Caldwell, Eller and Schulz 2208.09954

Experiments

Detection concepts

- calorimetric approach: source = detector
- solid state: pixelated detector
- liquid: monolithic self-shielding volume
- energy: primary and sufficient observable

Energy $Q_{\beta\beta}$

Isotope	Daughter	$Q_{etaeta}{}^{ m a}$	$f_{ m nat}^{ m b}$	$f_{\mathrm{enr}}^{\mathbf{c}}$
		$[\mathrm{keV}]$	[%]	[%]
$^{48}\mathrm{Ca}$	$^{48}\mathrm{Ti}$	4267.98(32)	0.187(21)	16
$^{76}\mathrm{Ge}$	$^{76}\mathrm{Se}$	2039.061(7)	7.75(12)	92
$^{82}\mathrm{Se}$	$^{82}{ m Kr}$	2997.9(3)	8.82(15)	96.3
$^{96}{ m Zr}$	$^{96}\mathrm{Mo}$	3356.097(86)	2.80(2)	86
$^{100}\mathrm{Mo}$	$^{100}\mathrm{Ru}$	3034.40(17)	9.744(65)	99.5
$^{116}\mathrm{Cd}$	$^{116}\mathrm{Sn}$	2813.50(13)	7.512(54)	82
$^{130}\mathrm{Te}$	$^{130}\mathrm{Xe}$	2527.518(13)	34.08(62)	92
$^{136}\mathrm{Xe}$	136 Ba	2457.83(37)	8.857(72)	90
$^{150}\mathrm{Nd}$	$^{150}\mathrm{Sm}$	3371.38(20)	5.638(28)	91

Experimental parameters

$$N_{ov\beta\beta}$$
 = atoms · time / $T_{1/2}$

$$T_{1/2} = 10^{26} \text{ year}$$
 $T_{1/2} = 10^{28} \text{ year}$ $100 - 1000 \text{ moles} \cdot \text{yr}$ atoms $time$

Experimental parameters

100 -1000 moles · yr

 $N_{ov\beta\beta}$ = atoms · time / $T_{1/2}$ a few events in 10,000-100,000 moles·yr $T_{1/2} = 10^{28} \text{ year}$

Matteo Agostini (UCL)

10,000 -100,000 moles · yr

Experimental parameters

Recent and future experiments

Recent and future experiments

Signal & Background

Tagging $0\nu\beta\beta$ decay events:

- two-electron summed energy = Q-value
- two-electron event topology
- (excited states/daughter isotope)

Backgrounds:

- cosmic-ray induced
- ²³⁸U/²²⁸Th decay chains
- neutrons
- solar neutrinos
- $2\nu\beta\beta$ decay (only irreducible background)

Mitigation

- underground laboratory
- material selection
- shielding strategy
- multivariate analysis
- energy tagging (only way to mitigate 2vbb)

The most sensitive technologies

arXiv:2202.01787 - Image courtesy of Laura Manenti

HEATH BATH

Ge semiconductor detectors

high-purity ⁷⁶Ge detectors

- ionization and charge drift
- < 0.1% energy resolution
- event topology

liquid Ar detector

shield and scintillation light

Staged approach:

- **GERDA/MAJORANA** Demonstrator (40 kg)
- **LEGEND-200** under commissioning (200 kg)
- **LEGEND-1000** conceptual design in preparation (1 t)

Xe time projection chambers

- ¹³⁶Xe VUV scintillation light and ionization electron drift -> 3D reconstruction
- background decreasing with distance from surface, ²¹⁴Bi and ²²²Rn remain problematic
- R&D to tag $0\nu\beta\beta$ decay daughter isotope

Experiment	m_{tot}	$f_{ m enr.}$	Phase	Readout
	[kg]	[%]		
EXO-200	161	81	liquid	LAPPDs + wires
nEXO	5109	90	liquid	electrode tiles $+$ SiPM s
NEXT-100	97	90	gas	SiPMs + PMTs
NEXT-HD	1100	90	gas	SiPMs + PMTs
PandaX-III-200	200	90	gas	Micromegas
PandaX-III-1K	1000	90	gas	Micromegas
LZ-nat	7000	9	dual-phase	${ m PMTs}$
LZ-enr	7000	90	dual-phase	${ m PMTs}$
DARWIN	39300	9	dual-phase	PMTs

Large liquid scintillators

scintillator loaded with target isotope

scintillation photons detected by PMTs

 photon number and arrival time gives event energy and position

• self-shielding and fiducialization

KamLAND-Zen-800 @Kamioka

- 750 kg of enriched Xe in nylon balloon
- backgrounds: $2\nu\beta\beta$, cosmogenic, solar neutrinos, ²¹⁴Bi on balloon
- next phase: improved resolution and purer scintillator

 $T_{1/2}^{0\nu} > 2.3 \times 10^{26} \,\mathrm{yr}$ at 90% C.L.

Matteo Agostini (UCL)

Cryogenic calorimeters

- temperature variation and scintillation light
- particle identification and good resolution
- array of isotopically enriched crystals operated at ~10 mK

Experiment	Crystal	m_{tot}	f_{enr}
		[kg]	[%]
CUORE	$^{\mathrm{nat}}\mathrm{TeO}_{2}$	742	34 ^a
CUPID-0	$Zn^{enr}Se$	9.65	96
CUPID-Mo	${\rm Li_2}^{\rm enr}{ m MoO_4}$	4.16	97
CROSS	${\rm Li_2}^{\rm enr}{\rm MoO_4}$	8.96	98
CUPID	${\rm Li_2}^{\rm enr}{\rm MoO_4}$	472	≥ 95
AMoRE	${\rm Li_2}^{\rm enr}{ m MoO_4}$	200	96

Nature 604 (2022) 7904, 53-58

 $T_{1/2}^{0v} > 2.2 \cdot 10^{25} \text{ yr}$

Beyond a simple rate measurement

How to gain insight on the decay channel?

- measure the electron momenta \rightarrow angular distribution
- compare decay rate in different isotopes
- combined analysis of neutrino physics, including cosmology

collaboration

The big 4 of last decade: GERDA, EXO-200, KamLAND-Zen-400, CUORE

The two that will dominate the next few years: **LEGEND-200, KamLAND-Zen-800**

Scenario 1: signal just beyond current limits

- experiments will discover it within a few years
- next-gen experiments will measures rate
- follow-up measurements of decay features

Scenario 2: weakest signal for inverted ordered neutrinos

- need to wait next-gen experiments for a discovery
- need R&D to measure decay features

Scenario 3: signal even weaker or absent

- need R&D for a convincing discovery
- interplay with oscillation experiments and cosmology can still lead to theory breakthroughs

Conclusions

 $0\nu\beta\beta$ decay can lead to the **direct observation of B-L violation** at low-energy in a controlled **laboratory** environment

 $0v\beta\beta$ decay is strongly linked to **L-violating Majorana** neutrinos

The discovery of $0v\beta\beta$ decay would lead to a **new "standard model"**, with a new interpretation of the fundamental symmetries and the matter-antimatter concept

A worldwide, **multi-isotope** experimental program is exploring an exciting parameter space, where a signal can be around the corner