Daniele Teresi Accidental Dark B From Scalar/Gauge Dynamics

based on 1907.11228, 2007.12663 and a bit of 1911.04502 with Ardu, Buttazzo, Di Luzio, Landini, Strumia, Wang, ...

5 Sep 2022 - BLV2022, Brussels

Dark Matter as an accidentally stable particle

- Old-school WIMPs much motivated by non ad-hoc stability (low-scale SUSY)
- Other frameworks where stability arises generically?
- Dark gauge dynamics: stability due to accidental dark baryon number B, analogous to matter stability
- Models with dark fermions: charged under SM for thermal contact, DM neutrality needs to be imposed
- What about dark scalars, singlet under SM?

Dark gauge/scalar dynamics

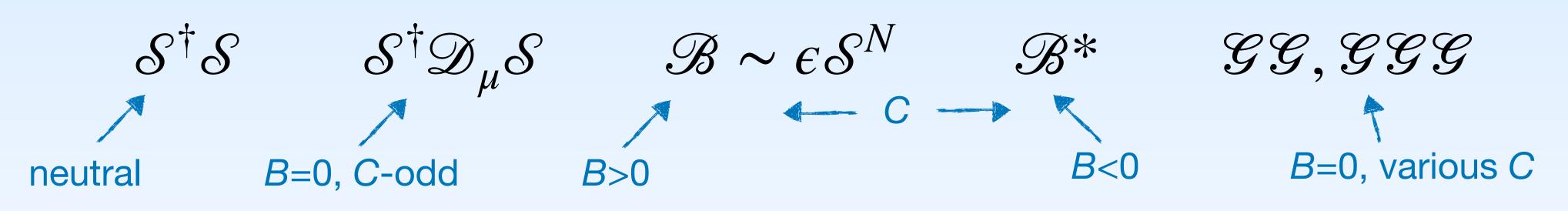
- Simple model: SM singlet scalar ${\mathcal S}$ charged under dark gauge group ${\mathcal G}$:

$$\mathscr{L} = \mathscr{L}_{\mathrm{SM}} - \frac{1}{4} \mathscr{G}^{a}_{\mu\nu} \mathscr{G}^{a\,\mu\nu} + |\mathscr{D}_{\mu}\mathscr{S}|^{2} - M_{\mathscr{S}}^{2} |\mathscr{S}|^{2} + \lambda_{\mathscr{S}} |\mathscr{S}|^{4} - \lambda_{H\mathscr{S}} |H|^{2} |\mathscr{S}|^{2}$$

- SU(2) well-known [Hambye '08; Hambye, Tytgat '09; Hambye, Strumia '13]
- Typically two phases: Higgs and confined
- Naively stability is shaky: symmetries broken by vevs
- Spoiler alert: we will find structural stability, due to a surprising field-theoretic duality

A fundamental of SU(N) Confined phase

- The Lagrangian is accidentally symmetric under dark B: $\mathcal{S} \to e^{i\alpha} \mathcal{S}$
- Also under dark charge conjugation C: $\mathcal{S} \to \mathcal{S}^*$, $\mathscr{D}_{\mu} \to \mathscr{D}_{\mu}^*$
- Composite states only distinguished by quantum numbers:



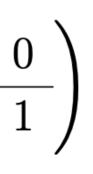
- The dark baryon ${\mathscr B}$ is accidentally stable and thus a dark-matter candidate

A fundamental of SU **Higgs phase, perturbative**

- The vev w breaks B
- It leaves new $B' \sim B + T_{SU(N)}^{broken} \propto diag(1,...,1,0)$ unbroken
- The gauge bosons in block form:
- Spectrum:
 - s : singlet of SU(N-1)
 - A_{μ} : adjoint of SU(N-1)
 - W_{μ} : fundamental of SU(N-1), B' = 1
 - Z_{μ} : singlet of SU(N-1), B' = 0, C-odd

$$\mathcal{S}(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ \vdots \\ 0 \\ w + s(x) \end{pmatrix}$$

$$\Gamma^{a}\mathcal{G}_{\mu}^{a} = \left(\frac{\mathcal{A}_{\mu}}{\mathcal{W}_{\mu}^{*}/\sqrt{2}} \middle| \begin{array}{c} \mathcal{W}_{\mu}/\sqrt{2} \\ 0 \end{array}\right) - \mathcal{Z}_{\mu}\sqrt{\frac{\mathcal{N}-1}{2\mathcal{N}}} \left(\frac{-\mathbf{I}/(\mathcal{N}-1)}{0} \middle| \begin{array}{c} \mathcal{M}_{\mu}(\mathcal{N}-1) \\ 0 \\ 0 \end{array}\right)$$



A fundamental of SU(N) Higgs phase, after SU(N-1) confinement

- Unbroken SU(N-1) confines at lower scales
- Composite SU(N-1)-singlets must form:
 - Higgs scalar *s* : neutral
 - vector Z_{μ} : B' = 0, C-odd
 - baryon $\mathscr{B} \sim \epsilon W^{N-1}$: $B' > 0, \mathscr{B} \rightarrow \mathscr{B}^*$ under C
 - glueballs AA, AAA : B' = 0, various C
- Baryon \mathscr{B} is accidentally stable, and thus a dark-matter candidate

surprisingly!

Higgs-confinement duality

- Symmetries in the two phases map into each other: $B \leftrightarrow B'$, $C \leftrightarrow C$
- States too!

$$\mathcal{S}^{\dagger}\mathcal{S} \leftrightarrow s \qquad \mathcal{S}^{\dagger}\mathcal{D}_{\mu}\mathcal{S} \leftrightarrow Z_{\mu} \qquad \mathcal{B} \sim \epsilon \mathcal{S}^{N} \leftrightarrow \epsilon W^{N-1} \qquad \mathcal{GG}, \mathcal{GGG} \leftrightarrow AA, AA$$

- We conjecture that the two phases are the very same, duality in description • For SU(2) this is the Fradkin-Shenker theorem, proven in the lattice
- This goes through in detail:

$$\mathcal{B} = \mathcal{S}^{I}[\epsilon_{IJK\cdots}(\mathcal{D}^{(n)}\mathcal{S})^{J}(\mathcal{D}^{(n')}\mathcal{S})^{K}\cdots$$

+ vev:
$$\langle S \rangle$$

+ Goldstone identification: \mathcal{D} .

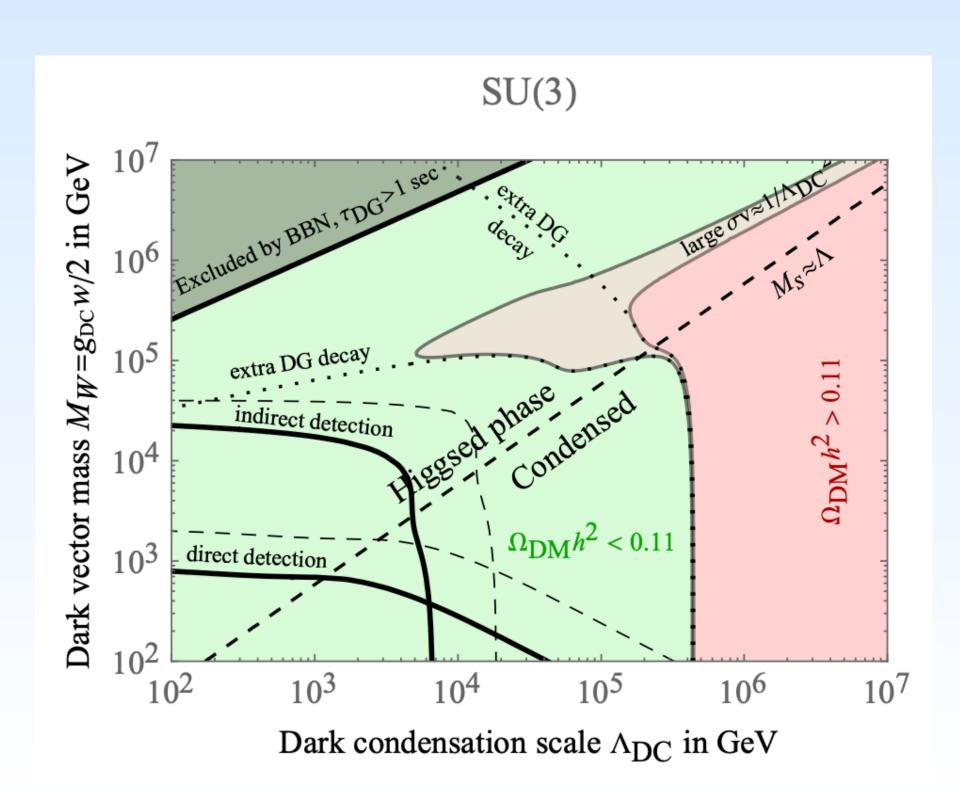
$$\mathcal{D}_{\mu}\mathcal{S}^{J}\leftrightarrow\mathcal{W}_{\mu}^{J}$$

Relic density Description in the Higgs phase

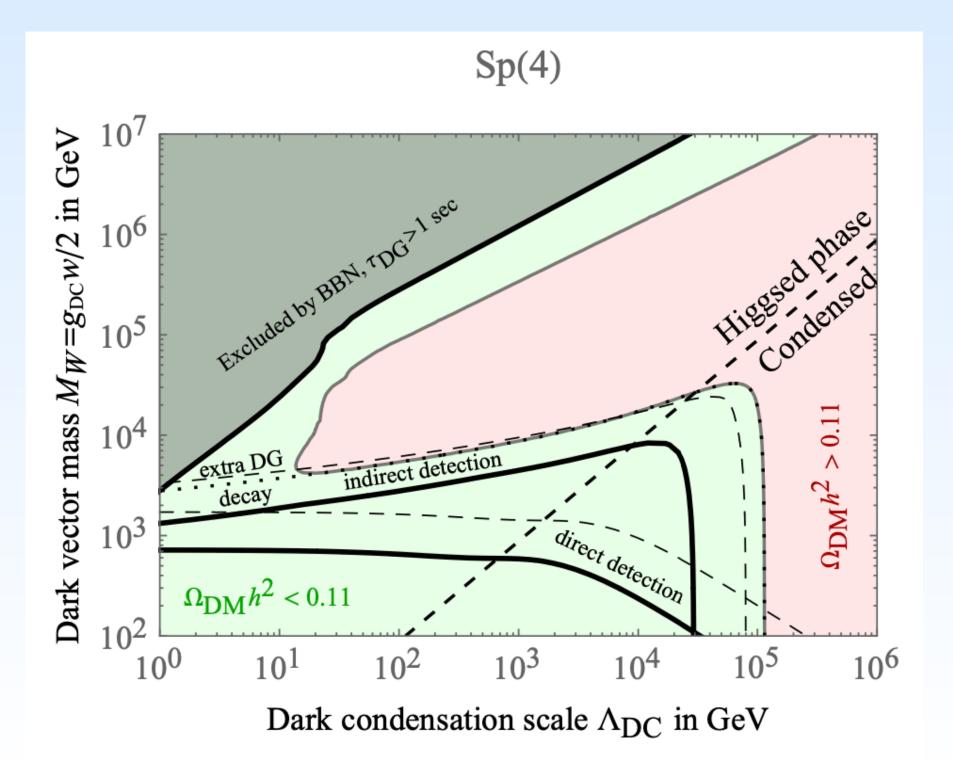
- dark baryons $\mathscr{B} \sim \epsilon W^{N-1}$ accidentally stable
- also C-odd AAA glueball stable, but it never dominates, so focus on \mathscr{B}
- relic density determined by rich thermal history:
 - 1. W_{μ} vectors perturbatively freeze out $(WW^* \rightarrow AA, As, ss, Zs, ZA)$
 - 2. SU(N-1) later confines, heavy W_{μ} form unstable mesons and stable \mathscr{B}
 - baryons have large cross-section and re-annihilate 3.
 - glueballs might decay slowly, and dilute relic density via early matter domination 4.

Parameter space

- Coleman-Weinberg $M_{\mathcal{S}}\simeq 0$ limit for simplicity (or naturalness considerations)
- dimensionless limit also for the Higgs: $\mu_H^2 \simeq \lambda_{HS} \langle \mathcal{S} \rangle^2$ (it increases predictivity)
- two parameters left, can be traded for $M_W \sim g_{\text{dark}} \langle S \rangle$ and strong scale Λ_{DC}



ity (or naturalness considerations) $\lambda_{HS} \langle S \rangle^2$ (it increases predictivity) $\sim g_{dark} \langle S \rangle$ and strong scale Λ_{DC}



Other gauge groups with duality

- We identified all Lie groups where the Higgs/confinement duality occurs
- Decisive criterion: only one breaking pattern and so one Higgs phase only
- SO(N) with a fundamental: stabilizing symmetry is O-parity (reflection along one group direction, analogous to parity for rotations)
- Sp(*N*) with a fundamental: accidental dark U(1), stable mesons but relic density dominated by neutral *W*, so pheno similar to SU(2).
- G_2 with a fundamental: broken to SU(3) in Higgs phase, $WWW W^*W^*W^*$ analogous to $K^0 \overline{K}^0$ system (one combination is stable, the other decays)

Two-index representations

- We studied $\mathcal S$ in the symmetric, antisymmetric, adjoint for SU(N), SO(N), Sp(N)
- We found no duality: for each case two Higgs phases, different from confined
- Many possibilities for accidental stabilizing symmetries, complicated pattern of dark-matter candidates
- Additional pheno: dark radiation, self-interaction, monopoles, …
- In some cases SSB of accidental U(1) Goldstone bosons

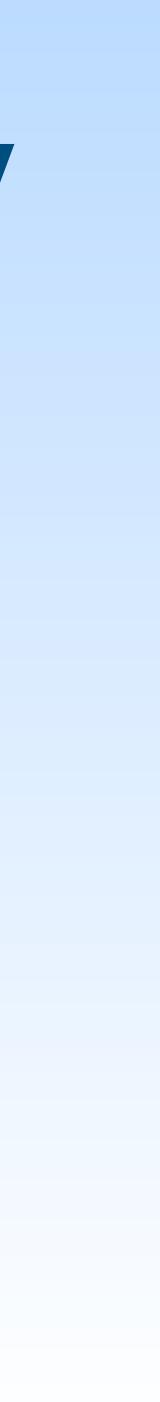
Two-in	Unbroken phase			Broken phase: perturbative				Broken condensed	
	gauge	scalar	accidental	unbroken	accidental	massive	massive	Dark	
	G	rep S	global	gauge H	global $\mathcal H$	vectors	scalars	Matter	
 We studie Sp(N) 	$SU(\mathcal{N})$	fundamental	U(1), \mathfrak{C}	SU(N-1)	U(1), \mathfrak{C}	\mathcal{W}, \mathcal{Z}	s	$\mathcal{B} \sim \mathcal{W}^{\mathcal{N}-1}, d\mathcal{A}\mathcal{A}\mathcal{A}$	
		symmetric	U(1), C	${ m SU}({ m N}-1)$	U(1), \mathfrak{C}	\mathcal{W}, \mathcal{Z}	$\mathfrak{s}, ilde{\mathfrak{S}}$	$\mathcal{B} \sim \mathcal{W}^{\mathcal{N}-1}, d\mathcal{A}\mathcal{A}\mathcal{A}, \tilde{\mathcal{S}} \text{ can be co-stable}$	
				$\mathrm{SO}(\mathcal{N})$	$\mathfrak{P}_{\mathrm{U}}, \mathfrak{C}$	W	$\mathfrak{a},\mathfrak{s},\widetilde{\mathfrak{s}}$	\mathfrak{a} + 0-ball if \mathcal{N} even	
		antisymm	U(1), C	${ m SU}({ m {\cal N}}-2)\otimes { m SU}(2)$	$\mathrm{U}(1), \mathfrak{C}$	\mathcal{W}, \mathcal{Z}	$\mathfrak{s}, ilde{\mathcal{S}}$	$\mathcal{B} \sim \mathcal{W}^{\mathcal{N}-2}$ if \mathcal{N} even; $\mathcal{W}^{2(\mathcal{N}-2)}$ if odd, $d\mathcal{A}\mathcal{A}$.	
				$\operatorname{Sp}(\mathcal{N})$	C	W	$\mathfrak{a},\mathfrak{s},\widetilde{\mathfrak{s}}$	a	
				$\operatorname{Sp}(\mathcal{N}-1)$	$\mathfrak{C}, \mathrm{U}(1)$	$\mathcal{W}, \mathcal{Z}, \mathcal{X}$	\$, \$	$\mathcal{Z}, \mathcal{M} \sim \mathfrak{X}^T \gamma_{\mathcal{N}-1} \mathfrak{X}$	
 We found 		adjoint	C	$\mathrm{SU}(\mathfrak{N}_1)\otimes\mathrm{SU}(\mathfrak{N}_2)\otimes\mathrm{U}(1)$	C	\mathcal{W}^{\pm}	$\mathfrak{s}, \mathring{\mathtt{S}}_1, \mathring{\mathtt{S}}_2$	charged double \mathcal{B} , depends on $\mathcal{N}_{1,2}$	
				$\mathrm{SU}(\mathcal{N}-1)\otimes \mathrm{U}(1)$	C	$ \mathcal{W}^{\pm}$	$\mathfrak{s}, \mathfrak{S}$	charged $\mathcal{B} \sim \mathcal{W}^{\mathcal{N}-1}$	
confined		fundamental	\mathcal{P}_{O}	SO(N-1)	\mathcal{P}_{O}	W	Ş	$0(1)$ -ball for \mathcal{N} odd (even)	
		symmetric traceless	ዎ _O	SO(N-1)	P _O	W	$\mathfrak{s}, ilde{\mathfrak{S}}$	$0(1)$ -ball for \mathcal{N} odd (even)	
				$\mathrm{SO}(\mathbb{N}/2)\otimes\mathrm{SO}(\mathbb{N}/2),\mathbb{N}/2$ even	$\mathcal{P}_{O_1}, \mathcal{P}_{O_2}$	W	$\mathfrak{s}, ilde{\mathbb{S}}_1, ilde{\mathbb{S}}_2$	0-ball	
Internet positive				$\mathrm{SO}(\mathbb{N}/2)\otimes\mathrm{SO}(\mathbb{N}/2),\mathbb{N}/2 ext{ odd}$	$\mathcal{P}_{O_1}, \mathcal{P}_{O_2}$	W	$\mathfrak{s}, \tilde{\mathbb{S}}_1, \tilde{\mathbb{S}}_2$	1-ball bi-baryon	
 Many positive pattern o 	$\mathrm{SO}(\mathcal{N})$			$SO((N+1)/2) \otimes SO((N-1)/2)$	$\mathcal{P}_{O_1}, \mathcal{P}_{O_2}$	W	$\mathfrak{s}, \mathfrak{S}_1, \mathfrak{S}_2$	0-ball	
pattorno		antisymm adjoint	$\mathbb{P}_{O}, \mathbb{Z}_{2}$	$\mathrm{SO}(\mathcal{N}-2)\otimes \mathrm{U}(1), \mathcal{N} ext{ even}$	Р _О	\mathcal{W}^{\pm}	$\mathfrak{s}, \mathfrak{S}$	neutral 0-ball + charged 2-ball or $\mathcal{M}^{\pm\pm}$	
				$\mathrm{SO}(\mathfrak{N}-2)\otimes \mathrm{U}(1), \mathfrak{N} ext{ odd}$	Р _О	\mathcal{W}^{\pm}	$\mathfrak{s}, \mathfrak{S}$	charged 1-ball \mathcal{B}^{\pm} + possibly $\mathcal{M}^{\pm\pm}$	
 Additional 				$\mathrm{SU}(\mathbb{N}/2)\otimes \mathrm{U}(1), \mathbb{N} ext{ even}$	_	$\mathcal{W}_{ij}^{\pm\pm}$	$\mathfrak{s}, \mathfrak{S}$	charged baryon $\mathcal{W}^{\mathcal{N}/4}$ or dibaryon	
				$\mathrm{SU}((\mathfrak{N}-1)/2)\otimes \mathrm{U}(1), \mathfrak{N} ext{ odd}$	_	$\left \mathcal{W}_{ij}^{\pm\pm}, \mathfrak{X}_{i}^{\pm} ight $	s,Š	charged baryon $\mathfrak{X}^{(\mathcal{N}-1)/2}$	
		fundamental	U(1)	$\operatorname{Sp}(\mathcal{N}-2)$	U(1)	$\mathcal{W}, \mathfrak{X}, \mathfrak{Z}$	ş	$\mathcal{W} ext{ and } \mathcal{M} \sim \mathfrak{X}^T \gamma_{\mathcal{N}-2} \mathfrak{X}$	
 In some ($\operatorname{Sp}(\mathcal{N})$	symmetric 7	\mathbb{Z}_2	$\operatorname{Sp}(\operatorname{\mathcal{N}}-2)\otimes\operatorname{U}(1)$	_	$\mathcal{W}^{\pm\pm}, \mathfrak{X}^{\pm}_i$	$\mathfrak{s}, ilde{\mathfrak{S}}$	$\mathcal{W}^{\pm\pm} \text{ and } \mathcal{M}^{\pm\pm} \sim \mathcal{X}^{\pm T} \gamma_{\mathcal{N}-2} \mathcal{X}^{\pm}$	
		adjoint	\mathbb{Z}_2	$\mathrm{SU}(\mathfrak{N}/2)\otimes \mathrm{U}(1)$	C	\mathcal{W}_{ij}^{\pm}	$\mathfrak{s}, ilde{\mathfrak{S}}$	charged baryon $\mathcal{W}^{\mathcal{N}/4}$ or dibaryon, $d_{\mathrm{SU}}\mathcal{AA}$	
		antisymm traceless	$\mathcal{C}_{\mathrm{Sp}}$	$\operatorname{Sp}(\mathfrak{N}_1)\otimes\operatorname{Sp}(\mathfrak{N}_2)$	$\mathbb{Z}_2, \mathfrak{C}_{\mathrm{Sp}}$	$\mathcal{W}_{i_1i_2}$	$\mathfrak{s},\tilde{\mathbb{S}}_1,\tilde{\mathbb{S}}_2$	DM exists only in special cases	
				$\operatorname{Sp}({\mathfrak N}-2)\otimes\operatorname{Sp}(2)$	$\mathbb{Z}_2, \mathfrak{C}_{\mathrm{Sp}}$	W	$\mathfrak{s}, ilde{\mathbb{S}}$	DM exists only in special cases	

Two-index representations

- We studied $\mathcal S$ in the symmetric, antisymmetric, adjoint for SU(N), SO(N), Sp(N)
- We found no duality: for each case: two Higgs phases, different from confined
- Many possibilities for accidental stabilizing symmetries, complicated pattern of dark-matter candidates
- Additional pheno: dark radiation, self-interaction, monopoles, …
- In some cases SSB of accidental U(1) Goldstone bosons

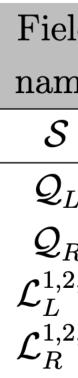
A new phenomenon: high-quality shift symmetry \mathcal{S} in the symmetric or antisymmetric of SU(N)

- $\langle \mathcal{S}_{ii} \rangle \propto \mathbb{I}_N$ breaks $SU(N) \to SO(N)$
- Accidental B is spontaneously broken: Goldstone $\mathcal{S}_{ii} \supset \mathbb{I}_N e^{i\frac{a}{f}}$
- The shift-symmetry of a has an extremely high quality: U(1) first broken by $\det S$, at dimension N
- Robust phenomenon for general field content, if $\langle S_{ij} \rangle$ is the only vev:
 - accidental U(1) charge of $\mathcal{O}_{ii...k}^{ab...c}$ is N-ality = # lower # upper indices
 - gauge singlets operators in the EFT \longrightarrow *N*-ality = 0, unless
 - $\mathcal{O} \supset \epsilon_{12...N}$ at dimension $\propto N$



High-quality QCD axion from accidental PQ

- operators up to dim ~ 10
- axion, where PQ symmetry is accidental
- and cancel gauge anomalies

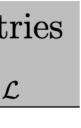


Peccei-Quinn quality problem: the PQ symmetry needs to be protected from

• We can use the mechanism with dark SU(N>10) to obtain a high-quality QCD

Only need to add suitable chiral fermions to generate anomaly under QCD

eld	Lorentz		Gauge sy	mmetries	Global accidental symmetri			
ne	spin	$\mathrm{U}(1)_Y$	$\mathrm{SU}(2)_L$	$\mathrm{SU}(3)_c$	${ m SU}(\mathcal{N})$	${ m U}(1)_{ m PQ}$	$\mathrm{U}(1)_{\mathcal{Q}}$	$\mathrm{U}(1)_\mathcal{L}$
>	0	0	1	1	$\mathcal{N}\mathcal{N}$	+1	0	0
	1/2	$+Y_{\mathcal{Q}}$	1	3	\mathcal{N}	+1/2	+1	0
R	1/2	$-Y_{\mathcal{Q}}$	1	$\overline{3}$	\mathcal{N}	+1/2	-1	0
2,3	1/2	$+Y_{\mathcal{L}}$	1	1	$ar{\mathcal{N}}$	-1/2	0	+1
2,3	1/2	$-Y_{\mathcal{L}}$	1	1	$\bar{\mathcal{N}}$	-1/2	0	-1



Conclusions

- Dark Matter is generic in models of a dark gauge group with a scalar
- Stability is accidental, not imposed ad hoc
- Stability is present also in Higgs phase, thanks to the gauge/confinement duality
- Rich cosmology, typically heavy dark matter
- Same setup can be instead used to obtain an accidental shift-symmetry protected to arbitrarily high order
- High quality QCD axion with accidental PQ symmetry

