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Dark matter

I Any mass is possible, but GW detectors can probe ultra-heavy
and ultralight regimes [3]
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Signatures of ultralight dark matter

I Superradiantly formed axion clouds around black holes [1]
I Primordial black holes could be linked to dark matter [8, 13]
I Dark photons could couple to baryons in interferometers [11]
I Scalar dark matter could cause time-dependent changes in

fundamental constants [6, 14, 2]
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Dark photons

I Narrow-band, stochastic background: a superposition of plane
waves with slightly different frequencies [11]

I Velocity of each dark photon follows a Maxwell-Boltzmann
distribution ∆f ∼ 1

2

(
v0
c

)2
f0 ∼ O(10−6)f0 Hz

I Continuous wave techniques, originally designed for isolated
neutron stars, can be applied

I Principle of detection: observe for a long time and take long
Fast Fourier Transforms (FFTs)
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Cross-correlation method

I Separation between
detectors << dark photon
coherence length →
measurements should be
almost identical

I Look for excess power above
certain threshold, taking into
account (1) misalignment
and (2) spatial separation of
detectors

I Upper limits in LIGO O1
data shown [7]
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Continuous wave method to detect dark photons

I Ideally, the FFT length should change based on the
frequency/mass we consider

I A semicoherent method exists to search for boson clouds
around black holes that varies FFT length [4]
I The GW signal from a boson cloud was assumed to be

monochromatic with a small random walk
I Follow up of dark photon dark matter signals [9]
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Follow-up techniques

I Increase TFFT and look for a decrease in signal-to-noise ratio
I Increase TFFT and average power spectra, looking for a peak

at ftrue = f0(1 + 1
2v

2
0 /c

2)

I Matched filter (in development)
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Follow-up technique 1

I f0 ' 744 Hz; critical ratio falls off as TFFT increases
I Injection done in LIGO O2 Livingston noise for whole O2 run;

signal is recovered at 95% confidence
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Follow-up technique 2

I Power spectra are averaged for different TFFT . Error in bins
from the simulated signal is plotted (no noise)
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Sensitivity estimates

I Left: comparison of empirical sensitivity and adjusted upper
limits in O1
I We consider higher maximum v for DPs → lower TFFT

I Shorter TFFT at higher frequencies

I Right: comparison of empirical and theoretical sensitivities
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Conclusions

I Dark photons are a viable candidate of dark matter and can be
searched with LIGO/Virgo

I Stochastic and continuous gravitational wave techniques are
well-suited to detecting dark photon dark matter

I Combination of particle and gravitational wave physics
I End-to-end analysis scheme to detect dark photons
I Development of matched filter technique for follow-up step in

progress
I Method to distinguish dark matter signals detected by

interferometers in development
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Ultralight dark matter

I Axion-like particles
I Pseudscalar particle that solves the strong CP problem in QCD

I Problem: no observed CP violations in QCD
I Couples to gauge bosons (photons)
I Also arise in compactifications of string theory [5]

I Dark photons: Gauge boson of the U(1)B or U(1)B−L group
arising from [11]:

1 The misalignment mechanism
I Field starts at nonzero, non-minimal vacuum value during

inflation, then dissipates energy over time, eventually
oscillating about the (very small) minimum in the potential

2 Tachyonic instability of a scalar field
I The potential has a negative mass term, meaning

perturbations to the field can cause energy emission in the
form of particles

3 Cosmic string network decays
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Strain induced on detector

Start with a superposition of plane waves:

~A =
N∑

n=1

~An,0 sin

(
m

(
1 +

1
2

(vn
c

)2
)
t − ~k · ~x + φn

)
(1)

~E = ∂t ~A ∼ m ~A (2)
~B = ∇× ~A ∼ mvjAkε

ijk (3)

~ai =
F

Mi
= εe

qD,i

Mi

~A0 cos(mt − ~k · ~xi ) (4)

| ~A0| normalized by current dark matter energy density, integrated
over coherent time/space of signal

∆L(t) = [x1(t)− x2(t)]− [y1(t)− y2(t)] (5)

∆L contains amplitude and phase evolutions of the signal
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Continuous gravitational waves

I Quasi-monochromatic,
quasi-infinite signals

I Small frequency variations
I Principle of detection:

observe for a long time and
take long Fast Fourier
Transforms
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Stochastic Backgrounds

Normally the power spectrum of a stochastic gravitational wave
background is:

SGW (f ) =
3H2

0
2

f −3ΩGW (f ) (6)

ΩGW =
f

ρc

dρGW
df

(7)

For dark photons, ρGW ∝ f 2h2
0:

SGW (f ) =
h2
0

2∆f
(8)

Almost constant background [11]
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Projected constraints
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I Projected constraints on dark-photons (left) [12] and scalar
dark matter (right) [6]

I Existing detectors can probe interesting portion of parameter
space
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LIGO/Virgo detectors

I Each incoming signal moves the mirrors uniquely, creating an
interference pattern
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Method overview

I Times series → power spectrum, whitening → spectrogram
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Continuous wave method to detect dark photons

I Ideally, the FFT length should change based on the
frequency/mass we consider; based on [4]
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Computational cost

I Search begins from 10 Hz BSD files [10]
I TFFT chosen based on maximum frequency in each 10 Hz band
I Sensitivity loss < 10% compared to using 1 Hz bands
I Using 1 Xeon CPU E5-2695 v2 and analyzing a 1990-2000 Hz

band takes ∼ 350 s
I Extrapolating to 20-2000 Hz and a one year of observation →

1.6 days
I Dividing the analysis on 2000 cores → search takes O(mins)
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