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Dark Sector Candidates, Anomalies, and Search Techniques
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» Any mass is possible, but GW detectors can probe ultra-heavy
and ultralight regimes [3]
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» Superradiantly formed axion clouds around black holes [1]

» Primordial black holes could be linked to dark matter [8, 13]
» Dark photons could couple to baryons in interferometers [11]
>

Scalar dark matter could cause time-dependent changes in
fundamental constants [6, 14, 2]
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» Narrow-band, stochastic background: a superposition of plane

waves with slightly different frequencies [11]
> Velocity of each dark photon follows a Maxwell-Boltzmann

distribution Af ~ %

(%) fo ~ O(107)f Hz

> Continuous wave techniques, originally designed for isolated

neutron stars, can be applied

» Principle of detection: observe for a long time and take long
Fast Fourier Transforms (FFTs)
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> Ideally, the FFT length should change based on the
frequency/mass we consider
> A semicoherent method exists to search for boson clouds
around black holes that varies FFT length [4]
> The GW signal from a boson cloud was assumed to be
monochromatic with a small random walk

» Follow up of dark photon dark matter signals [9]
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» Increase Trrr and look for a decrease in signal-to-noise ratio

» Increase Tprr and average power spectra, looking for a peak
at frrue = fO(l + %Vg/c2)

» Matched filter (in development)
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> fy ~ 744 Hz; critical ratio falls off as Trr7 increases
» Injection done in LIGO O2 Livingston noise for whole O2 run;
signal is recovered at 95% confidence
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> Power spectra are averaged for different Trer. Error in bins
from the simulated signal is plotted (no noise)
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> Left: comparison of empirical sensitivity and adjusted upper
limits in O1
» We consider higher maximum v for DPs — lower Tger
» Shorter Terr at higher frequencies

> Right: comparison of empirical and theoretical sensitivities
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» Dark photons are a viable candidate of dark matter and can be
searched with LIGO/Virgo

> Stochastic and continuous gravitational wave techniques are
well-suited to detecting dark photon dark matter

» Combination of particle and gravitational wave physics
> End-to-end analysis scheme to detect dark photons

» Development of matched filter technique for follow-up step in
progress

> Method to distinguish dark matter signals detected by
interferometers in development
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> Axion-like particles
> Pseudscalar particle that solves the strong CP problem in QCD
> Problem: no observed CP violations in QCD
> Couples to gauge bosons (photons)
> Also arise in compactifications of string theory [5]
» Dark photons: Gauge boson of the U(1)g or U(1)g_, group
arising from [11]:
@ The misalignment mechanism

> Field starts at nonzero, non-minimal vacuum value during
inflation, then dissipates energy over time, eventually
oscillating about the (very small) minimum in the potential

@ Tachyonic instability of a scalar field

» The potential has a negative mass term, meaning
perturbations to the field can cause energy emission in the
form of particles

© Cosmic string network decays
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Start with a superposition of plane waves:

N
B B 2 .
A = z_:lAn,osin <m<1+;<‘?> )t—k"?"’?b”) (1)
B = VxA~ mvjAye (3)
F iz P
a3 = W = ce ql\?l;- Ao cos(mt — k - x}) (4)

\A}| normalized by current dark matter energy density, integrated
over coherent time/space of signal

AL(t) = Dalt) = x(t)] = (t) — ya(2)] (5)

AL contains amplitude and phase evolutions of the signal

Dark photon dark matter Andrew Miller



s and limits Conclusions References

[e]e] Je]e]ele]e]e]

» Quasi-monochromatic,
quasi-infinite signals .
» Small frequency variations

Continuous gravitational waves

» Principle of detection:
observe for a long time and
take long Fast Fourier
Transforms

Spinning neutron star
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Normally the power spectrum of a stochastic gravitational wave
background is:

3H?

Sew(f) = Of 3Qew(f) (6)

f dpew
Qew = — 7
T (7)

For dark photons, pgyw o fzhg:

Sowl(f) = 52 Q

cw 2A0f

Almost constant background [11]
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> Projected constraints on dark-photons (left) [12] and scalar

dark matter (right) [6]

> Existing detectors can probe interesting portion of parameter

space

Andrew Miller

Dark photon dark matter



s and limits Conclusions References

[e]e]e]e]e] Jele]e]

power recycling
mirror

photodiode
laser

» Each incoming signal moves the mirrors uniquely, creating an
interference pattern
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> Times series — power spectrum, whitening — spectrogram
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For each detector:

1. Cleaned, reduced
analytic time series

2. Peakmap every 10
Hz with different Trrr

3. Peakmap projection
onto frequency axis

| 4. Candidate selection |

| 5. Coincidences |

| 6. Follow-up |

> |deally, the FFT length should change based on the
frequency/mass we consider; based on [4]

Dark photon dark matter Andrew Miller



Background Methods and limits Conclusions References

00000000e

Search begins from 10 Hz BSD files [10]
TreT chosen based on maximum frequency in each 10 Hz band
Sensitivity loss < 10% compared to using 1 Hz bands

Using 1 Xeon CPU E5-2695 v2 and analyzing a 1990-2000 Hz
band takes ~ 350 s

Extrapolating to 20-2000 Hz and a one year of observation —
1.6 days

» Dividing the analysis on 2000 cores — search takes O(mins)
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