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Introduction
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@ Integrated circuit and sensor design

@ Two currently active projects for GW detectors:
— Einsten Telescope (ET)
— Laser Interferometer Space Antenna (LISA)

@ Supervisor: Prof. Dr. Ir. Filip Tavernier
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Two Different Design Cases

Cryo-CMQOS circuits for
ET cryogenic chambers

Deep-cryogenic environment




Cryo-CMOS and sensors for ET

Sense port 1

Sense capacitor

(c) Detail view

@ Application: ultra-cold vibration control for the interferometer mirrors

@ MEMS accelerometers with novel cryogenic CMOS signal conditioning integrated circuits
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Why Custom Integrated Circuits?

@ Main advantages:

© Tailored for the application

© VLSI integration
® Less volume and cabling

© Less power —\\l  \ i \\\ /;
© Signal integrity - ’,.\
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® Specific challenges:

@ Extreme environments
@ Device modeling
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Compact Models for Circuit Simulation
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* MODEL FLAG PARAMETERS

_ TCAD models are not fast enou h OO ON
g +lmin = 2.59e-008 lmax = 2.51e-007 wnin = ‘wmin p svt’
+wmax = ‘wmax p svt’ version = 4.5 binunit = 1
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® Compact models try to capture =i @i Ema
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+rgeomod = 0 rgatemod= 0 permod = 1
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* GENERAL MODEL PARAMETERS
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- +tnom = 25 toxe = ‘toxp svt’ toxp = 1.012e-009
deVICe +toxm = ‘toxp_svt’ dtox = 2.5e-010 epsrox = 3.9
+toxref = 1.2e-009 wmlt = 1 wint = 0
+lint = 4.1628e-011 11 =0 wl =0
+1lln = 1 wln = lw =0

= wwl = =

+Xw = ‘0+dxwp_svt’ dlc = 6887e-009 dwc = 0

. .
+xpart = 0
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* DC PARAMETERS
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— . +vth0 = '-0.46149+dvthp svt+sdvtp svt+sigvtp svt’ k1l = 0.35256
O e Car S — Se O eVIce +1k1 = -0.0024567 k2 = 0.017398 k3 = 0.27044
+k3b = 0.07434 w0 = le-007 dvt0o = 0.52272
+dvtl = 0.50091 dvt2 = -0.021065 dvtow = 0.013

paral I Iete rS +dvtlw = 5984800 dvt2w = 0.05 dsub = 4.1202

— Generally not derived from the o] e iy .
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Deep-cryogenic device modeling for ET
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[A. Akturk et al., Trans. El. Dev., 2010]
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Cryo-CMOS Design Roadmap

Design of test structures in different nanoscale CMOS
technologies (supplied by foundries) o] (e A, R, ] | v

Characterization inside a cryostat and model parameter
extraction

Editing of foundry models to enable cryogenic Integrated
Circuit simulation

Design of cryogenic Application Specific Integrated
Circuits (ASICs)
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Optical Front-End Electronics (FEE) for LISA

TM : Test Mass
SC : Spacecraft

GRS : Gravitational Sensor

ESA-L3-EST-INST-DD-
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Radiation induced development challenges

B iple well Ge

@ Insufficient modeling B double vell e
@ Absence of parameters s

needed to understand i

topology-based SET i

effects L
@ Radiation models for

very high TID levels

available which cause o

] . SET pulse width (ps)
overdesign if used

[J.Zhang et al., IEEE Access, Vol.7, 2019]
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Radiation-hardened CMOS Design Cycle

ASIC Design B

Vn0m+AV R 1
V R Vnom"’%
= 12 Identification of Performance
Voom B 1, RHBD techniques Measurements

to be employed without radiation

RHBD : Radiation
Hardening by Design

P Identifying circuit Performance
=1, i blocks affected by Measurements
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radiation with radiation




Current development focus

@ LISA:

— Tackle noise requirement using suitable architectures and
radiation effects study

— Use analysis to implement RHBD techniques to ensure
performance reliability

@ ET-LF:
— Deep-cryogenic characterization to obtain a working compact
model

— Use the compact model to design a cryo-CMOS MEMS
interface

— In the meantime, design the cryo-MEMS sensor
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Conclusion

@ Integrated circuits enable compact and low-power
Implementations of functional blocks

@ Appropriate modeling of environmental factors further
assists in performance and reliability

@ Overall, a customized solution tailored on the
application that is able to exceed desired performance

@ Research In IC domain is typically 15 years ahead of
Industrial products!
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Chip Design Workflow
Chip Design High-Level Schematic
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Fabrication
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Process Design Kits (PDKs)
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