The **next** circuits for a better life

Chip Design for Gravitational Wave Detectors

Alberto Gatti, Ciana Barretto and Filip Tavernier

1.00 11

Introduction

- Integrated circuit and sensor design
- Two currently active projects for GW detectors:
 - Einsten Telescope (ET)
 - Laser Interferometer Space Antenna (LISA)
- Supervisor: Prof. Dr. Ir. Filip Tavernier

Two Different Design Cases

Cryo-CMOS circuits for ET cryogenic chambers

Deep-cryogenic environment

Optical Front End Electronics for LISA

Radiation exposure

Cryo-CMOS and sensors for ET

- Application: ultra-cold vibration control for the interferometer mirrors
- MEMS accelerometers with novel cryogenic CMOS signal conditioning integrated circuits

4

KU LEUVEN

Why Custom Integrated Circuits?

- Main advantages:
 - © Tailored for the application
 - ☺ VLSI integration
 - $\ensuremath{\textcircled{}}$ Less volume and cabling
 - ☺ Less power
 - Signal integrity
 - Amplification/conditioning close to sensor
- Specific challenges:
 - Sextreme environments
 - Device modeling

[J. C. Bardin et al., ISSCC 2019]

Compact Models for Circuit Simulation

- Compact model ≠ TCAD model!
 - TCAD models are not fast enough
- Compact models try to capture the <u>electrical behavior</u> of the device
 - Generally <u>not</u> derived from the underlying physics
- Model cards = set of device parameters

* BSIM4.5.0 model card for p-type devices		

.model pch_svt.1 pmos (level = 54		

* MOD	EL FLAG PARAMETERS	

+1min = 2.59e-008	lmax = 2.51e-007	wmin = 'wmin_p_svt'
+wmax = 'wmax_p_svt'	version = 4.5	binunit = 1
+paramchk = 1	mobmod = 1	capmod = 2
+igcmod = 2	igbmod = 1	geomod = 0
+diomod = 1	rdsmod = 0	rbodymod= 0
+rgeomod = 0	rgatemod= 0	permod = 1
+acnqsmod= 0	trngsmod= 0	

* GENERAL MODEL PARAMETERS		

+tnom = 25	toxe = 'toxp_svt'	toxp = 1.012e-009
+toxm = 'toxp_svt'	dtox = 2.5e-010	epsrox = 3.9
+toxref = 1.2e-009	wmlt = 1	wint = 0
+lint = 4.1628e-011	11 = 0	wl = 0
+lln = 1	wln = 1	lw = 0
+WW = 0	lwn = 1	wwn = 1
+lwl = 0	wwl = 0	xl = '0+dxlp_svt'
+xw = '0+dxwp_svt'	dlc = 2.6887e-009	dwc = 0
+xpart = 0		

*	DC PARAMETERS	

+vth0 = `-0.46149+dvthp_svt+sdvtp_svt+sigvtp_svt' k1 = 0.35256		
+1k1 = -0.0024567	k2 = 0.017398	$k_3 = 0.27044$
+k3b = 0.07434	w0 = 1e - 007	dvt0 = 0.52272
+dvt1 = 0.50091	dvt2 = -0.021065	dvt0w = 0.013
+dvt1w = 5984800	dvt2w = 0.05	dsub = 4.1202

Deep-cryogenic device modeling for ET

- Compact models provided by foundries are unable to describe cryogenic behavior
 - Cryogenic characterization and modeling are required
- ☺ T is very well regulated

(U LEUVEN

Cryo-CMOS Design Roadmap

Design of test structures in different nanoscale CMOS technologies (supplied by foundries)

Characterization inside a cryostat and model parameter extraction

Editing of foundry models to enable cryogenic Integrated Circuit simulation

Design of cryogenic Application Specific Integrated Circuits (ASICs)

KU LEUVEN

Optical Front-End Electronics (FEE) for LISA

Radiation induced development challenges

- Insufficient modeling
- Absence of parameters needed to understand topology-based SET effects
- Radiation models for very high TID levels available which cause overdesign if used

[J.Zhang et al., IEEE Access, Vol.7, 2019]

Radiation-hardened CMOS Design Cycle

Current development focus

LISA:

- Tackle noise requirement using suitable architectures and radiation effects study
- Use analysis to implement RHBD techniques to ensure performance reliability
- letter Etter Etter Etter 🗴
 - Deep-cryogenic characterization to obtain a working compact model
 - Use the compact model to design a cryo-CMOS MEMS interface
 - In the meantime, design the cryo-MEMS sensor

- Integrated circuits enable compact and low-power implementations of functional blocks
- Appropriate modeling of environmental factors further assists in performance and reliability
- Overall, a customized solution tailored on the application that is able to exceed desired performance
- Research in IC domain is typically 15 years ahead of industrial products!

Key References

- B.P. Abbott et al., "Observation of Gravitational Waves from a Binary Black Hole Merger", in Phys. Rev. Lett., vol. 116, no.6, Feb. 2016
- M. Punturo ET Conceptual Design Study document available : http://www.et-gw.eu/index.php/etdsdocument
- R. M. Incandela, L. Song, H. Homulle, E. Charbon, A. Vladimirescu and F. Sebastiano, "Characterization and Compact Modeling of Nanometer CMOS Transistors at Deep-Cryogenic Temperatures," in IEEE Journal of the Electron Devices Society, vol. 6, pp. 996-1006, 2018.
- A. Beckers, F. Jazaeri and C. Enz, "Characterization and Modeling of 28-nm Bulk CMOS Technology Down to 4.2 K," in IEEE Journal of the Electron Devices Society, vol. 6, pp. 1007-1018, 2018.
- A. Beckers, F. Jazaeri and C. Enz, "Cryogenic MOS Transistor Model," in IEEE Transactions on Electron Devices, vol. 65, no. 9, pp. 3617-3625, Sept. 2018.
- W. Sansen, "Minimum Power in Analog Amplifying Blocks: Presenting a Design Procedure," in IEEE Solid-State Circuits Magazine, vol. 7, no. 4, pp. 83-89, Fall 2015.
- M. Mehrpoo et al., "Benefits and Challenges of Designing Cryogenic CMOS RF Circuits for Quantum Computers," 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 2019, pp. 1-5.
- H. Oka, T. Matsukawa, K. Kato, S. lizuka, W. Mizubayashi, K. Endo, T. Yasuda, and T. Mori, "Toward Long-coherence-time Si Spin Qubit: The Origin of Low-frequency Noise in Cryo-CMOS," IEEE Symposium on VLSI Circuits, 2020.
- B. Patra et al., "Cryo-CMOS Circuits and Systems for Quantum Computing Applications," in IEEE Journal of Solid-State Circuits, vol. 53, no. 1, pp. 309-321, Jan. 2018.
- P. A. 'T Hart, M. Babaie, E. Charbon, A. Vladimirescu and F. Sebastiano, "Characterization and Modeling of Mismatch in Cryo-CMOS," in IEEE Journal of the Electron Devices Society, vol. 8, pp. 263-273, 2020.
- J. R. Hoff et al., "Cryogenic Lifetime Studies of 130 nm and 65 nm nMOS Transistors for High-Energy Physics Experiments," in IEEE Transactions on Nuclear Science, vol. 62, no. 3, pp. 1255-1261, June 2015.
- European Space Research and Technology Center (ESTEC) Concurrent Design Facility LISA Phase0 Study Internal Final Presentation (Unclassified) available: https://sci.esa.int/web/lisa/-/59336-lisa-internal-phase-0-cdf-study-final-presentation
- A. S. Jursa, "Handbook of Geophysics and the Space Environment, " Chapter 3, J. Feynman," Solar Wind, " USAF, 1985.
- ECSS, "Space Product Assurance: Techniques for radiation effects in ASICs and FPGAs handbook," Issue 1, Sep. 2016, ECSS-Q-HB-60-02A, pp. 106.
- A. Joshi et al., "Ultra-Low Noise, Large-Area InGaAs Quad Photoreceiver with Low Crosstalk for Laser Interferometer Space Antenna," in Proc. SPIE 8453, High Energy, Optical, and Infrared Detectors for Astronomy V, 84532G, September 2012
- IMEC, "Design Against Radiation Effects (DARE)," available: http://dare.imec-int.com/en/home
- A. Caratelli, K. Kloukinas, A. Fioriti, "CERN ASIC support News and Radiation Tolerant device models for 65nm technology," Topical Workshop on Electronics for Particle Physics, Sep. 2019, slides 25–27, available: https://indico.cern.ch/event/799025/contributions/3537494/attachments/1902331/3140743/2019-09-02_MUG_News.pdf
- R. Ginosar, "RadSafeTM Technology and JPEG200 image compression ASSP," Ramon Chips, slides 17–18, available: http://spacewire.esa.int/WG/Microprocessors/ADCSS07-DSP-Proceedings/Session4-ASIC%20processes/4-0900%20RadSafe%20ASSP%20-%20Ginosar.pdf
- Cobham, "Available Cobham RadHard ASIC Products," available: https://scss.cobhamaes.com/pagesproduct/asics/prods-asics-space.cfm
- Microchip, "Rad-Hard 150 nm SOI CMOS Cell-based ASIC for Space Use," available: http://ww1.microchip.com/downloads/en/DeviceDoc/ATMX150RHA%20Datasheet.pdf
- J.Zhang et al., "Single Event Transient Study of pMOS Transistors in 65 nm Technology With and Without a Deep n+ Well Under Particle Striking," IEEE Access, Volume 7, Oct. 2019, pp. 149255–149261

The **next** circuits for a better life

A LOAN TON ET

The **next** circuits for a better life

La liere liere la

Chip Design Workflow

Process Design Kits (PDKs)

