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Introduction 
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Integrated circuit and sensor design

Two currently active projects for GW detectors:
– Einsten Telescope (ET)

– Laser Interferometer Space Antenna (LISA)

Supervisor: Prof. Dr. Ir. Filip Tavernier



Two Different Design Cases

Deep-cryogenic environment
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Radiation exposure

Cryo-CMOS circuits for 

ET cryogenic chambers

Optical Front End 

Electronics for LISA



Cryo-CMOS and sensors for ET
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Application: ultra-cold vibration control for the interferometer mirrors

MEMS accelerometers with novel cryogenic CMOS signal conditioning integrated circuits



Why Custom Integrated Circuits?

Main advantages:

Tailored for the application

VLSI integration

Less volume and cabling

Less power

Signal integrity

Amplification/conditioning 

close to sensor

Specific challenges:

Extreme environments

Device modeling
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[J. C. Bardin et al., ISSCC 2019]



Compact Models for Circuit Simulation
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Compact model ≠ TCAD model!

– TCAD models are not fast enough 

Compact models try to capture 

the electrical behavior of the 

device

– Generally not derived from the 

underlying physics 

Model cards = set of device 

parameters



Deep-cryogenic device modeling for ET

Compact models provided by 
foundries are unable to describe 
cryogenic behavior

Cryogenic characterization and 
modeling are required

T is very well regulated
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[A. Akturk et al., Trans. El. Dev., 2010]



Cryo-CMOS Design Roadmap
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Design of test structures in different nanoscale CMOS 
technologies (supplied by foundries)

Characterization inside a cryostat and model parameter
extraction

Editing of foundry models to enable cryogenic Integrated
Circuit simulation

Design of cryogenic Application Specific Integrated
Circuits (ASICs)



Optical Front-End Electronics (FEE) for LISA
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ASIC Optical  FEETM : Test Mass

SC : Spacecraft

GRS : Gravitational Sensor

Optical Bench on LISA Spacecraft

Optical Receiver

Preamplifier 

per quadrant

ESA-L3-EST-INST-DD-

001:December 2017



Radiation induced development challenges 

Insufficient modeling

Absence of parameters 
needed to understand 
topology-based SET 
effects

Radiation  models for 
very high TID levels 
available which cause 
overdesign if used
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[J.Zhang et al., IEEE Access, Vol.7,  2019]



Radiation-hardened CMOS Design Cycle
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ASIC Design

Performance 
Measurements 

without radiation

Performance 
Measurements 
with radiation

Identifying circuit 
blocks affected by 

radiation

Identification of 
RHBD techniques 

to be employed

RHBD : Radiation 

Hardening by Design



Current development focus

LISA: 
– Tackle noise requirement using suitable architectures and 

radiation effects study

– Use analysis to implement RHBD techniques to ensure 
performance reliability

ET- LF: 
– Deep-cryogenic characterization to obtain a working compact 

model

– Use the compact model to design a cryo-CMOS MEMS 
interface

– In the meantime, design the cryo-MEMS sensor 
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Conclusion

Integrated circuits enable compact and low-power 

implementations of functional blocks

Appropriate modeling of environmental factors further 

assists in performance and reliability

Overall, a customized solution tailored on the

application that is able to exceed desired performance

Research in IC domain is typically 15 years ahead of 

industrial products!
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Thank you for your attention!



Supplementary slides



Chip Design Workflow 
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Process Design Kits (PDKs) 
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